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1  Introduction 

1.1 Background 

The simulation of the physical phenomena is a key issue of engineers. The main motivation is 

the understanding of the system behaviors. 

Most of the time, the setup of simulations have to answer these specific questions:  

 What must be considered to carry out a study/ which physical phenomena / which 

modeling type.... 

 Where to isolate the system 

 Which and How to introduce boundary conditions 

The finite element modeling activity starts from real physical observations, to make 

approximations on physical fields (temperature, stress fields...) and simplifications of real 

geometry as illustrated in figure 1. 
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Figure 1 : main steps to follow during the finite element modeling approach. 

Basically, the definition of problem starts from the observation of particular physical 

phenomena, next the engineers define the mathematical modeling most suited to the 

observations (usually based on differential equations). Then, classical approach to solve such 

formulation is based on simplification of the formulation (discrete modeling) and finally, the 

numerical code is defined (through matrix system) to make possible the resolution of the 

problem by the means of computing methods. 
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Figure 2 : illustration of the simplification steps ; from the mathematical formulation to the 

numerical resolution.  

The different simplifications use to make more tractable the problem lead to several 

approximations and error propagation. One of the main motivation is to estimate their values.  

 

The main classical modeling formulations used for the physical study of systems are listed in 

the following table. The developed formulation in this course assumed a stationary state of 

the problem and discrete formulation for which an equilibrium equation could be 

written (1st Newton’s law). 

    {F} = [K] {u}  

with {F} : load vector, [K] : stiffness matrix and {u} displacement vectors. 
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Figure 3 : classical modeling formulation for physical studies.  

1.2 Statements 

The finite element method is classically used for a wild range of applications of the 

engineering studies. It could be cited :  

 The definition of design architecture of products and systems 

 The dimensioning of parts. 

 The optimization of process 

 The understanding of particular and complex phenomena (machining operation, flow 

of material…) 

According to the studied phenomena, the numerical simulation could be : 

 A static simulation in case of: 

o Structural computation and dimensioning 

o Strain and stress computation according to the loading 

o Vibration study 

 Modal analysis (principal modes identification) 

 Noise study and propagation 

 A dynamic simulation for: 

o Crash test modeling  

o Process simulation 

 Forming process, machining operations… 

 Thermo-mechanical simulation: 

o Modification of mechanical property of materials according to thermal 

variation 

o Process simulation  

 Forming process, machining operations, additive manufacturing 

process… 
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However, each of these approaches and methodologies require: 

 to take precautions regarding the computed results (i.e. it is not enough to see only the 

color gradients),  

 to be able to estimate the expected results (order of magnitude), identify the expected 

mechanical quantities 

 to set up validations by comparing the results with experimental tests 

 and finally, to use simplified models from simple analytical cases to estimate the 

expected results. 

 

The main difficulties come from: 

 the modeling and characterization of the material 

 the geometrical modeling of the problem (mesh) 

 the choice of geometrical characterization (type of elements and dof) and model 

assumptions (symmetry, displacement) 

 the contact management / the application of effort / the pressure loads … 

2 Deductive definition of unidimensional finite 
element: the truss element 

2.1 General consideration 

A truss is one of the simplest and widely used structural elements. It corresponds to a straight 

bar designed to take only axial forces and it deforms only in its axial direction. Some typical 

conditions are required concerning the cross-section (should be much smaller than the axial 

dimension). Such elements are commonly used for the modeling of skeletal type of truss 

structural systems in two or three-dimensional space. 

 
Figure 4 : architectural illustration of truss structure. 

2.2 Stiffness definition 

The main motivation is to deduce from the basic concept the characteristic of truss elements. 

To do this, three hypotheses is required :  

 H1 : linear behavior of material: the behavior of the material assumes a linear 

relation between the stress and the deformations (also called internal linearity 

condition).  

 H2 : small deformations : the deformations are modeled by linear relation between 

stress and strain computation (also called external linearity condition). 

 H3 : The study is supposed to be a static problem.  
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Following these hypotheses, it could be observed a linear relation between the stress and the 

displacements. That means that for a structure subject to boundary conditions (fi, Ti
d, ui

d) [1], if 

the solution is (σij, ui); then, for the limit condition (fi, Ti
d, ui

d), it could be deduced that 

the solution become (σij, ui). 

 
[1] with fi : internal load, Ti

d: external load, ui
d : displacement. 

 

What is the consequence of these hypotheses (linearity and proportionality) on the behavior 

an one-dimensional structure? Let consider a structure subject to a traction load belonging to 

the axis of the structure as shown in figure 5. 
 



x  



y  



z  



F  

L 

 
Figure 5 : illustration of the one-dimensional structure subject to traction load 

 

Assuming a virtual portion of the structure belonging the x-axis : 

 
 



F , S1 

        Sx 

-xx 

 

Remark : it is assumed that for all points M 

of the section Sx, the stress is expressed by 

 


T (M,-


x ) = -xx 


x  

The equilibrium could be written as follow: 

F – 11.S = 0  

Thus, 11 = 
F

S
 

With S is the cross section of the 

structure.  

The constitutive equations could be reduced to Hooke’s law for 1D solids (case of one-

dimensional problem, excluded the transverse deformation): 

11=E.11 

With E corresponds to the Young’s modulus. 

 

Remark: it could be observed the linear relation assumed in the previously.  

 

The strains are then defined by : 

11 = 
du1(x)

dx
 



where :   
du1(x)

dx
 = 
11

E
 = constant (since 11 and E are constant values). 

Thus,    u1(x) = 
11

E
 x + cst  

If the boundary conditions are introduced into the previous equation, it could 

become: 

u1(0)=0 d’où u1(x)= 
11

E
 x 
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And for x = L 

u1(L) = 
FL 

ES
 

 

Finally, the particular solution of the problem is: 

u1(x) = x. 
F 

ES
 

11 = 
F

S
 

(3) 

The proportionality between the load, F, and the solution (11, u1(x)) is validated. 

With equation (3) and for x=L shows that F = E 
S

L
 . u1(L) 

It could be observed that the behavior of the truss corresponds to an axial spring with a 

stiffness defined by the particular ratio: E.
S

L
 

F = k u1(L) 

 
L L + u1(L) 

F 

 
If we want to change the stiffness value of the structure, two kinds of modifications could be 

made: 

 On the material, modification of E 

 On the geometry, 
S

L
 

 

Remark 

It could be noticed that the linear relations 11=E.11 and 11 = 
du1(x)

dx
 leads to proportionality 

between external load F and the displacement field u(x). More to this, the stiffness is not a 

function of the load and is directly defined by the material and the geometry of the structure.  

 

3 Hypothesis of the displacement field and the 
stiffness matrix of the truss element 

The construction of a finite element is always based on an assumption about the displacement 

field. In some cases, this assumption corresponds to those made in the theory of the 

continuum mechanic such as the theory of beams, plates or shells. This section is dedicated to 

the construction of the truss element.  

 

 

3.1 Beam subjected to traction 

The Euler-Bernouilli assumption for thin beams assumes that’s that the cross section remains 

perpendicular to the median line of the beam. 
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F 

u(x) 

After deformation   

 
Based on this assumption, we can write that: 



u  (x,y,z)=u(x).


x  

The relation between F and u(x) is then: 

xx = 
du

dx
 ;  xy = yy = … = 0 

xx = E 
du

dx
 

After the integration on a straight section 





s

 
xx =





s

 
E 

du

dx
 ds 

F = ES 
du

dx
 

Soit   
du

dx
 = 

F

ES
 

For a constant value of F and for a constant cross section, this leads to: 



0
xdu = 





0

x
 

F

ES
 dt 

 

u(x) – u(0) = 
F

ES
 . x 

u(x) = 
F

ES
 . x + u(0) 

Since the displacement field has a linear behavior, it could be defined by two constants. These 

constants could be for example the extremal displacement of the points 1 and 2 (called the 

nodes). So: 

u(0)=u1 et u(L) = u2 
The relation of the displacement as a function of the position belonging the element could be 

defined by the following equation: 

 

u(x) = u1 








1 –  
x

L
 + u2 . 

x

L
  

Which could be written as : 

u(x) = N1(x).u1 + N2(x).u2 

where Ni(x) is called the shape function. 
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3.1.1 Conclusion 

The Bernouilli's hypothesis or more generally, regarding the displacement field of structure, it 

is possible to fully determine the mathematical relation describing it. The switch from 

continuous (displacement field) to discrete (two nodal displacements u1 and u2) is also 

possible since the displacement is defined through a finite number of nodal displacements. 

 

It could also be noticed that from the displacement field, the deformations and stresses in the 

element are defined by: 

 

xx = 
u2 – u1

L
 

xx = E 
u2 – u1

L
 

3.2 Stiffness matrix 

From the displacements u1 and u2, the stress state can be computed. By the integration of the 

stress function, the value of load F1 and F2 are computed. A relation can be expressed between 

the loads (F1, F2) and nodal displacements (u1, u2).  

This linear relation (expressed previously) can be written through a matrix formulation. This 

particular formulation is used to express the “stiffness matrix” of the truss.  

 
 1 2 

F2 F1 

 
Equilibrium condition: 

F1 + F2 = 0 (4) 
Relation between load and displacement (F : normal load = F2) : 

F2 = 
ES

L
 (u2 – u1) 

(5) 

Reporting the result of (4) in the equation (5), we obtained: 

F1 = 
ES

L
 (u1 - u2) 

Through matrix relation: 







F1

F2

= 









ES

L

-ES

L

-ES

L

ES

L

. 






u1

u2

 

Thus : 

{F} = [K] . {u} 

With  {F} : vector of nodal forces 

          [K] : stiffness matrix.           

{u} : vector of nodal displacements.  
 

Remark : 

 The stiffness matrix is a symmetric matrix. 

 The matrix K is a singular matrix (determinant is zero). 
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Thus, if the beam is subjected to loads F1 et F2: 

 If F1  - F2: the equilibrium equations are not verified and there is no solution.  

 If F1 = - F2: there are an infinite number of solutions ; if a couple of displacements (u1, 

u2) is the solution, then the couple (u1+a, u2+a) is also a solution  a. That means that 

the solutions are defined for a rigid solid displacement.  

To find a particular solution of the problem, it is necessary to impose the value of 

a and then, the particular computations of u1 and u2 are possible.  

 

 

If a displacement is imposed as a boundary condition on nodes (e.g. on u1), then it is not 

possible to define an external load on the same node (e.g. on F1) that mean that the load 

(F1) becomes an unknown parameter of the problem to solve.  

4 Assembly procedure of elementary stiffness 
matrix 

Let suppose a structure made up of two finite elements subjected to three external loads as 

shown in figure below. 

 
 
Fi 

Fj 
Fk 

e e+1 

  

 
 With Fi, Fj, Fk : external loads applied in every node 

 And Qie the internal loads of the element e 

 
 Fi 

Qi
e
 

  

 

Equilibrium of the node i 

-Qie + Fi = 0 
 

 

 

 

 
 

Qi
e
 Qj

e
 

  

 

Equilibrium of the element e 

Qie
 + Qje

 = 0 

 

 Fj 

Qj
e
 

Qj
e+1

 

  

 

Equilibrium of the node j 

-Qje - Qje+1 + Fj = 0 

 
 

Qj
e+1

 Qk
e+1

 

  

 

Equilibrium of the element e+1 

Qje+1
 + Qke+1

 = 0 

 

 Fk 

Qk
e+1

 

  

 

Equilibrium of the node k 

-Qke+1 + Fk = 0 
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We can sum up the different relations: 

Qie = Fi  

Qje + Qje+1 = Fj  

Qke+1 = Fk  
 

(6) 

(7) 

(8) 

If we introduce the previous relation between the stiffness and the nodal displacements, we 

can write:  

{F}=[K].{u} 
Assuming that the nodal displacement of the node f is called qf, 







Qie

Qje
= 






Kiie Kije

Kije Kjje
. 






qie

qje
 







Qje+1

Qke+1
= 






Kjje+1 Kjke+1

Kjke+1 Kkke+1
. 






qje+1

qke+1
 

Then, into the equations (6 to 8), 

Kiie.qi + Kije.qj = Fi 

Kije.qi + [Kjje + Kjje+1 ] .qj  + Kjke+1.qk  = Fj 

Kjke+1.qj +  Kkke+1.qk = Fk 
Finally, through matrix relation: 







Fi

Fj

Fk

=







Kiie Kije 0

Kije     Kjje+Kjje+1 Kjke+1

0 Kjke+1 Kkke+1

. 







qi

qj

qk

 

5 Introduction of the boundary conditions 
In the previous section, we have seen how to assemble the different elementary stiffness to 

express the global stiffness of a structure (K). The relation is: 

   {F} = [K] {q} 

With   {F} : vectors of nodal loads 

           {q} : vector of nodal displacements 

           [K] : stiffness matrix of the structure. 

 

This relation corresponds to the integration of both the geometry shape of the structure and 

the material property. To find the final equilibrium of the structure, it is necessary to introduce 

the boundary conditions.  

 

Two kind considerations are possible: 

 Either, the nodal load is unknown and then displacement is defined 

 Either, the nodal load is applied and then, the displacement is deduced. 

 

5.1.1 Case of applied loads 

It is supposed that the load is only applied and concentrated to nodes. The load directly 

corresponds to a particular value of the vector of nodal loads ({F}).  
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5.1.2 Case of nodal displacements  

As previously defined, the solution of the finite element problem ({F}=[K]{q}) is defined 

whatever the solid displacement of the structure (displacement field without any 

deformation). The rigid body displacement corresponds to: 

 3Rotations 

 3Translations. 

 

To define a particular solution of the finite element problem, it is necessary to avoid these 

rigid displacements by imposing some motions (translation and/or rotation). 

5.1.3 Method for the resolution of finite element problem  

 If, in a particular node, the structure is constrained by supports (e.g. external parts or 

frame). The displacement is then imposed and the loads correspond to a resultant of 

the problem. This value will be computed. 

 

 If, in a particular node, a nodal load is applied, the strategy of resolution follow this 

procedure : 

o 1. The resolution of the matrix relation is made in which only the equation 

without null degree of freedom and imposed nodal load is considered.  

 In this case, a cancellation of rows and column in stiffness matrix is 

made, hence K becomes Symmetric Positive Definite Matrix.  

o 2. Then, the contact reaction of the problem is computed from the equations 

assuming the nodal displacement supposed to be null (the use of suppressed 

equation at the previous step). 

5.1.4 Illustration: case of fixed bar subject of external load 

Consider a bar of uniform cross-sectional area shown in figure. The bar is fixed at one end 

and is subjected to an horizontal load of F at the free end. The beam is made of an isotropic 

material with Young’s modulus E.  
 

A 

L 

C 
F 

 

A 

L 

C 
F 

e1, l1 e2, l2 

B 

  

 
1. Set up an analytical resolution of the problem (based on continuum mechanic equation).  

2. Set up a finite element resolution assuming a model composed of two truss elements.  

 Write the stiffness matrix for every element.  

 Assemble the two stiffness matrix to define the stiffness of the structure 

 Express the problem to be solved and solve it. 

5.1.5 Modification of the previous problem 

Consider the same problem previously studied and add an external load on the 

node B called Fb. Follow the same steps to solve the problem (analytical 

formulation and finite element approach). 

 



6 Assembly procedure, a general formulation 
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7 General construction of finite element 
In the previous sections, a relationship between displacements and nodal loads of a structure 

has been established. This requires that all boundary conditions (displacement or loads) are 

located at the nodes. So how to take into account, for example, the case of distributed loads 

over a structure? 

 

The technique consists in setting up a discretization of the loads in order to reduce it to an 

equivalent problem for which the loads are located on the nodes of the structure. 

 

To do this, an equivalence criterion between the continuous and discrete problem should be 

defined. The notion of equivalence between physical quantities of a different nature is based 

on an energy criterion. Thus, two types of energy are considered: 

 The deformation energy 

 The work of external loads 

 



 (ui) = 




V

 







 

1

2
 Cijklijkl − ij

0ij  dV  – 




V

 
fi

Vui dV  – 




S

 
fi

Sui dS 

 

With  ij : mechanical strain resulting of the loads 

  ij
0: initial stress state (thermal or mechanical pre-stress). 

  Cijkl : elastic tensor 

  fi
V : vector of forces applied on the volume of the structure 

  fi
S : vector of forces applied to the surface of the structure 

 

The deformations are then computed from the mathematical derivations of the displacements. 
 

It could be defined that the equilibrium of structure is obtained when the total potential energy 

of the structure is minimal. From this condition, it could be defined the stationary principle or 

principle of minimum total potential energy.  

Based on this structural equilibrium, it can be observed that whatever the perturbation of 

displacement (virtual displacement) that do not modify the value of total potential 

energy.  

 ui   0          = 0 

 

  
Total potential energy 

Equilibrium position 

Virtual perturbation 

 

Figure 6 : illustration of the principle of a minimum total potential energy and virtual 

perturbation. 
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7.1 Formulation of elementary matrix 

Let consider a solid subjected to external loads, these loads will generate deformations on the 

solid.  

7.1.1 Definition of the displacement fields 

 

Let suppose (x, y, z)  becomes (x + u,  y + v, 

z + w) 

 

As shown previously, the displacement field 

of an element is defined by interpolating the 

nodal values ui: 

u (x, y, z)  = 
i = 1 

 ne 

 Ni (x, y, z)  ui 

 

 

{u} =  









u(x, y, z) 

v(x, y, z) 

w(x, y, z)

= 
i = 1 

 ne 

 









Ni 0 0

0 Ni 0

0 0 Ni

.









ui 

vi 

wi

 

 

With ui, vi, wi, the nodal displacements 

 

Let define a nodal vector of displacements called {qe} defined as: 

{qe}
t
 = {u1, v1, w1,u2, v2, w2, …  un, vn, wn} 

 

In the general case, we can write:  {u}     =   [ N ]       {qe}    
       (nc × 1)          (nc × ndof)       (ndof × 1)  

 

Where nc is the number of displacement fields and ndof is the number 

of degrees of freedom. 

 

We can rewrite this relation as follow: 

    {u}  =  

















N1 0 0

0 N1 0

0 0 N1 







N2 0 0

0 N2 0

0 0 N2

   … 









N3 0 0

0 N3 0

0 0 N3

 .{qe}    

7.1.2 Set up of deformation fields 

Assuming the hypothesis related to linear elasticity, the deformation values are derived from 

the derivative computation of the displacements: 

ij  = 
1

2
  






 ui

 xj
 + 
 uj

 xi
      

Or, in more general relation:  

{}= [D] {u} 

With [D] : matrix of partial derivative operators 
 

In case of planar elasticity problem, the matrix system can be written as: 
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







x 

y 

xy

 = 









 u

 x

 v

 y
 

 u

 y
 + 
 v

 x

  = 









 

 x
0

0
 

 y
 

 

 y
  
 

 x

 






u 

v
 

 

By replacing {u} with its expression as a function of nodal values, we obtain: 

{}    =   [D]     [ N ]     {qe} 
(n × 1)          (n × nc)    (nc × ndof)       (ndof × 1)  

With nis the number of deformation parameters in the studied problem.  

It could be deduced:  

  {}    =   [B]     {qe} 
(n × 1)          (n  × ndof)       (ndof × 1)  

where  [B] is the matrix composed of the derivative values of the shape functions.  

 

The matrix [B] is then independent of the displacement state of the element. 

7.1.3 Set up of the stress state 

The stress values are obtained from the following relationship: 

{}    =   [C]     {} 
(n × 1)          (n × n)    (n× 1)  

[C] matrix of linear elasticity defined by E and   

 

With initial deformation {ex. thermal …), it could be written: 

{}    =   [C]     ({} - { 

By introducing the previous relation and nodal variables: 

{}    =   [C] [B] {qe} - [C] {

=   [C] [B] {qe} - { 

With {: initial stress {[C] { 

7.1.4 Summary of the main results 

We have shown that the behavior of the structure by finite element procedure is fully defined 

according to the nodal unknown parameters {qe}. To verify the stationary of the total potential 

energy, a virtual variation must be applied through a perturbation of the displacement field. 

A key result is then, all other quantities being independent then the operator (perturbation) is 

only applied to nodal variables. 

{u} = [N] {qe} 

{} = [B] {qe} 

{} = [C] [B] {qe} 

7.2 Construction of the elementary matrix 

e = 




Ve

 





 

1

2
 Cijklijkl - ij

0ij  dV  – 




Ve

 
fi

Vui dV  – 




Se

 
fi

Sui dS 

With  Ve and Se represent respectively the volume and the surface of the element 

 

This expression can be written as: 

e = 




Ve

 





 

1

2
 {}t[C]{} – {}t{}  dV  – 





Ve

 
{u}t{f V} dV  – 





Se

 
{u}t{f S} dS 
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The virtual variation of {u} leads to: 

 e = 




Ve

 
( ){}t[C]{} – {}t{}  dV  – 





Ve

 
{u}t{f V} dV  – 





Se

 
{u}t{f S} dS 

The discretization of this expression gives: 

 e = 




Ve

 
({qe}t[B]t[C][B]{qe} – {qe}t[B]t{}) dV   – 





Ve

 
{qe}t[N]t{f V} dV – 





Se

 
{qe}t[N]t{f S} dS 

If {qe}
t is put in common in the relation: 

e = {qe}
t 









Ve

 
([B]t[C][B]{qe} – [B]t{}) dV  





– 




Ve

 
[N]t{f V} dV  – 





Se

 
[N]t{f S} dS  

However, by using the stationary of the potential energy, this equation could be simplified 

(whatever the value of {qe}
t): 













Ve

 
[B]t[C][B]  dV  {qe} = 





Ve

 
[B]t{}dV + 





Ve

 
[N]t{f V} dV + 





Se

 
[N]t{f S} dS 

  

 

 

 

From this relation, it could be written the following relation: 

              [Ke]            {qe}  =    {Fe}      

 













Ve

 
[B]t[C][B]  dV  {qe} = 





Ve

 
[B]t{}dV + 





Ve

 
[N]t{f V} dV + 





Se

 
[N]t{f S} dS 

  

It could be deduced by identification: 

                    [Ke] = 












Ve

 
[B]t[C][B]  dV  : Stiffness matrix  

And : {Fe} = {Fe
V} +{Fe

S} +{Fe
0}   

                   {Fe
V}= 





Ve

 
[N]t{f V} dV  : Vector of volume loads 

                   {Fe
S} = 





Se

 
[N]t{f S} dS : Vector of surface loads 

7.3 Illustration on a weighted bar 
 



g = g.


x  



x  

L 

 

Let supposed a bar subjected to its own weight. 

1. Carry out the theoretical study of the bar 

fields (deformations, stresses, 

displacements) 

2. Make an approximation with the use of: 

           - 1 truss element 

           - 2 truss elements and finally 3 trusses 

 

 

 

Stiffness of the structure: 

Material, geometry, contacts 

Solicitation of the structure : 

Volume or surface loads, initial stress state 
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Analytical approach 

The normal load applied in the section is: F(x) = gS(L - x) 

The relation between the load and the displacement following the Bernouilli’s 

hypothesis: 

du(x)

dx
 = 

F(x)

ES
 = 
g

E
 (L - x) 

Then:   u(x) = 




 
g

E
 (L - x)dx = 

g

E   (L - x)dx = 
g

2E
 x(2L – x) 

 

Finite element approach 

The stiffness matrix can be defined by:  

[Ke] = 




Ve

 
[B]t[C][B]  dV  

 

And for 1 element, 

  (x) = 
du (x) 

dx
 = 

dN1(x) 

dx
u1 + 

dN2(x) 

dx
u2 = 







dN1(x) 

dx
 
dN2(x) 

dx 





u1 

 u2
 

  (x) = E .  (x) 

We can deduce by identification the different terms: 

[B] = 






dN1(x) 

dx
 
dN2(x) 

dx
 

[C] = E 

For a bar with a constant section value, 

[Ke] = 




l

 





S

 









dN1(x) 

dx
 

 
dN2(x) 

dx

E 






dN1(x) 

dx
 
dN2(x) 

dx
 dx dS  

[Ke] = ES 




l

 









dN1(x) 

dx

dN1(x) 

dx
  

dN1(x) 

dx

dN2(x) 

dx

 
dN2(x) 

dx

dN1(x) 

dx

dN2(x) 

dx

dN2(x) 

dx

  dx   

With  N1(x) = 1 – 
x

l
  

dN1(x) 

dx
 = - 

1

l
 

N2(x) =  
x

l
        dN2(x) 

dx
 = 

1

l
 

We can find that: 

[B] =  



- 

1

l
    1

l   

And the stiffness matrix corresponds to: 

 [Ke]  = 
ES

l
 






1  -1

 -1 1
 

For the computation of the load due to the own weight of the bar, the equivalent 

nodal loads can be calculated by: 

{Fe}= 




Ve

 
[N]t {f v}dV = S 





l

 
[N]t{f v}dx  

With {f v}=g 
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{Fe}= S 




0

l 
 









1 – 

x

l
  

 
x

l

 g dx = gSl 









1

2

1

2

 

 

With gSl corresponds to the total weight of the bar, called later W. 

 

 

For 1 element: 

ES

L
 






1  -1 

 -1  1 





u1

u2

 = W 









1

2

1

2

 

 

So  u2 = 
WL

2ES
 

 (x) = 
-1

L
 u1 + 

1

L
 u2  = 

W

2ES
 

 (x) = 
W

2S
 

 

For 2 elements: and l = L/2 , u1 = 0 

2ES

L
 







1  -1  0 

 -1  2  -1

0 -1  1

 







u1

u2

u3

 = 
W

2
  









1

2

1

1

2

 

 

So, the solution is:  







u1

u2

u3

 = 
WL

8ES
 









0

3

4

 

For x   L/2 :  = 
-1

L/2
 u1 + 

1

L/2
 u2  = 

3W

4ES
   = 

3W

4S
 

For x  > L/2 :  = 
-1

L/2
 u2 + 

1

L/2
 u3  = 

W

4ES
   = 

W

4S
 

For 3 elements: l = L/3 , u1 = 0 

 

3ES

L
 











1  -1  0  0

 -1  2  -1 0

0  -1  2  -1 

 0 0 -1 1

 











u1

u2

u3

u4

 = 
W

3
 











1

2

1

1

1

2

 

 

So, the solution is:  









u1

u2

u3

u4

 = 
WL

18ES
 









0

5

8

9

 

For     x  L/3 :     = 
-1

L/3
 u1 + 

1

L/3
 u2  = 

5W

6ES
   = 

5W

6S
 

For L/3  x  2L/3  :  = 
-1

L/3
 u2 + 

1

L/3
 u3  = 

W

2ES
   = 

W

2S
 

For 2L/3  x  L      :  = 
-1

L/3
 u3 + 

1

L/3
 u4  = 

W

6ES
   = 

W

6S
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7.3.1 Synthesis of the main results and conclusion 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

theo

1elt

2elt

3elt

  gl²

E
  

 

Valeur de u

Même si les valeurs 

nodales sont exactes, 

l’allure de la déformée 

par segment linéaires 

s’éloigne de la solution 

théorique en milieu 

d’élément.

Diminuer l’erreur 

augmenter nombre 

d’éléments

  

x  

We can see the comparison between 

analytical solution and finite element 

solutions.  

Even if the nodal displacement 

values are equal to the analytical 

results, the shape of the displacement 

is not exact. 

Some errors appear! 

 

The increase of the element numbers 

leads to decrease these errors. 
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8 Exercises and Practical Work Support 

8.1 The bar case 

8.1.1 Exercice 1: 

The figure below shows a mechanical system consisting of 3 rigid mobile trolleys 

interconnected by a system of stiffness springs called ki. 

 

Q1. Give the equilibrium expression of particular spring ki subjected to external loads F1
i et 

F2
i and nodal displacements u1 et u2. Deduce the relationship {F}=[K]{u} following two 

different approaches: 

 By writing the equilibrium expression for every node. 

 By using Castigliano's theorem (every derive of the potential energy against every 

displacement is null). 

  

 F2
i
 F1

i
 

u1 u2 

 
Q2. Calculate the displacement ui of every rigid mobile and the forces Fi in the springs for the 

applied loading Ri. 

  

k1 

k4 

k3 

k2 

k5 

U1, R1 

U2, R2 

U3, R3 
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8.2 Definition of a finite element for the bending: beam element 

8.2.1 Bending behavior 

  

x 0 
l 

v1,1                      v2, 2 

y 
 

A beam element is a 2 node element of class C1 

(ensuring the  tangent continuity). 

We therefore want to write the displacement 

according to y (called v) as follows: 

v(x) = N1(x).v1 + N2(x).1 + N3(x).v2 + N4(x).2 

 

The following conditions are defined: 

v(0)  = v1 N1 = v1 et N2 = N3= N4=0   

v’(0) = 1 N’2 =1 et N1’= N3’= N4’=0 

v(l)   = v2 N3 = v2 et N1 = N2= N4=0 

v’(l)  = 2 N4 =2 et N1’= N2’= N3’=0  

In order to respect all these conditions, the polynomial must be of the 3rd order. 

Then,    Ni(x) = a + bx + cx² + dx3 

and   Ni’(x) = b + 2cx + 3dx² 

 

The following system can be built: 






v(0)  = v1 

v’(0) = 1 

v(l)   = v2 

v’(l)  = 2

= 











1 0 0 0

0 1 0 0

1 l l² l3

0 1 2l 3l²

. 






a

b

c

d

 

 

By solving this system, we can obtain: 






a

b

c

d

= 











1 0 0 0

0 1 0 0

-3/l² -2/l 3/l² -1/l

-2/l3 1/l² -2/l3 1/l²

. 






v1

1

v2

2

 

 

It can be seen that each of the columns corresponds to the shape functions Ni, hence : 

N1(x) = 1 – 3/l² .x² + 2/l3 x3 

N2(x) = x – 2/l .x² + 1/l3 x3 

N3(x) = 3/l² .x² - 2/l3 x3 

N4(x) = – 1/l .x² + 1/l2 x3 

 

We have seen in the course session that from the shape functions (and their derivatives), it 

was possible to deduce the stiffness matrix of the element. To do this, it is necessary to 

express the link between the positions (vi, i) and the deformations. 

8.3 The structural behavior of a structure subject to bending 

Hypothesis: 

No deformation of the middle of the part 

No rotation of the cross section (hyp. Bernoulli) 

Linear material behavior 
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8.3.1 Definition of the geometrical relations for deformations 

 

  

d 

C 
D 

D’ y 



A 
B 

Fibre 

neutre 

x 

 

Let suppose a beam subject to a pure bending solicitation 

(only one torque) around the perpendicular axis to the 

beam. It results an angular deviation called d.  

Under the hypotheses, it is assumed that there is no 

deformation at the middle of the part (neutral fiber), thus: 

AB = d

On the upper side of the part, it is observed an elongation 

of the part (intially called CD with deformation) becoming 

CD’ after elongation. It could be deduced: 

CD’=(y)d

And finally, the deformation: 

= 
l

l0
 = 

CD’- CD

CD
 = 

DD’

CD
 =  

(y)d - d

d
 = 

y


  

By observing that 1/ = 
d2v(x) 

dx²
 (2nd derivatives of the 

position along y axis), we can obtained : = y. 
d2v(x) 

dx²
. 

  

8.3.2 Definition of the relation between loads and deformations  

 
  

ds dF 

y 

x 

z 

y 

 

Assuming a Hooke law, it could be defined a relation 

between the stress state and the deformation: 

 = E
y


  

From these relations, it is possible to write the relation 

between a local load (dF) and the stress value: 

dF = ds = 
y


 ds 

8.4 Stiffness matrix of a beam  

From the relation defined in 2.1: 
y


 y. 

d2v(x) 

dx²
. It could be writen for a discrete problem 

formulation: 

 (x) = y [
d²N1(x) 

dx²
  … 

d²N4(x) 

dx²
] . 




v1

 …

2

 

The corresponding derivatives relations: 
d²N1(x) 

dx²
 = -6/l² +12x/l3 

d²N3(x) 

dx²
 = 6/l² -12x/l3 

d²N2(x) 

dx²
 = -4/l +6x/l2 

d²N4(x) 

dx²
 = -2/l +6x/l2 

 

Then, 
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[Ke] = 




l

 





S

 











d²N1(x) 

dx²
 

 …

 
d²N4(x) 

dx²

 y2E 






d²N1(x) 

dx²
 …  

d²N4(x) 

dx²
 dx dS  

A finally: 

[Ke] = 




l

 











d²N1(x) 

dx²
 

 …

 
d²N4(x) 

dx²

  E 






d²N1(x) 

dx²
 …  

d²N4(x) 

dx²
  dx 





S

 
 y2 dS  

Thus, it could identify the definition of the area moment of inertia, 




S

 
 y2 dS , it could deduced: 





S

 
 y2 dS  = 





y

 





z

 
 y2 dy dz  

               =   
/2

/2

/2

/2

31

3

h

b

b

h

y z




 
  

= 
bh3

12 
 

  

x 

y 

z 

z  [-b/2 ; b/2] 

y [-h/2 ; h/2] 

 
 

The final integration of this relation gives the symmetric stiffness matrix [Ke]: 

[Ke] = 
EI 

l3  . 











12 6l -12 6l

 4l² -6l 2l²

  12 -6l

   4l²

 

 

 

8.4.1 Global behavior of beam (including traction and bending) 

The element has a similar behavior of a bar for tensile / compressive loads and a bending 

behavior, which has been explained in the previous paragraph. We can deduce the global 

stiffness matrix: 
  

  u1 v1  u2 v2 2  

  ES/l 0 0 -ES/l 0 0 u1 

    12EI/l
3
 6EI/l² 0 -12EI/l

3
 6EI/l² v1 

[Ke] =      4EI/l 0 -6EI/l² 2EI/l 

      ES/l 0 0 u2 

       12EI/l
3
 -6EI/l² v2 

        4EI/l 2

  

8.5 First application 

8.5.1 Concentrated force case 

Data from the practical work application: 
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  F 
width b=0.1m ; 

L=4m ; 

F=2000N ; 

h= 0.15m 

1 2 

L 

 
It is proposed to model this application with only 1 beam element. Following these different 

steps: 

1. Definition of the elementary stiffness matrix 

2. Definition of the global stiffness matrix 

3. Introduction of the boundary conditions 

4. Resolution 

8.5.2 Linear load case 

It is proposed to study the same application assuming a linear load on the structure (q). 
  

q Width b=0.1m ; 

L=4m ; 

q=500N/m 

h= 0.15m 

1 2 

L 

 
Definition of the equivalent nodal load to be applied: 

{Fe}=




Ve

 
[N]t {f v}dV= 





l

 
[N]t{f v}dx with {f v}=q 

1. Computation of the equivalent nodal load to be applied 

2. Definition of the elementary stiffness matrix 

3. Definition of the global stiffness matrix 

4. Introduction of the boundary conditions 

5. Resolution 
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8.6 From a local to a global stiffness behavior 

8.6.1 Studied case 

Let supposed an articulated lattice made up 

of bar elements. Each of them can then be 

subjected to traction or compression 

solicitations. 

 

   

 

 

 

 
 

 

 

 

 

Section S, Material : E 

1 2 

F 

 

A 

B C 

L 

- 

 

8.6.2 Discrete modeling 

The finite element approach can be composed of: 

- 2 elements  

- 3 nodes 

 

Thus, the table could be deduced: 

 Node Section Length 

1 A,B S L/sin  

2 A,C S L/sin  

 

The vectors of nodal displacements and forces are then: 

{q}=











uA

vA

uB

vB

uC

vC

   and   {F}= 











FxA

FyA

FxB

FyB

FxC

FyC

 

8.6.3 The definition of the truss element 

 

Description 

 

u1
* 

X1
* X2

* 

u2
* 

Node 1 Node 2 

Element (e)  

 

In the local frame of the truss, the nodal 

displacements and forces are along the x 

axis 

{qe}=






u1

*

u2
*     

and  {Fe}= 






X1

*

X2
*  

 

Interpolation 

The displacement and the shape function are: 
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Ue
*(x) = u1

* 






1 –  

x

L
 + u2

* 
x

L
  

 



N1(x) = 







1 –  

x

L

N2(x) = 
x

L
 

 

 

Then: 

Ue
*(x) = N1(x) . u1

* + N2(x) . u2
* 

               = [N1(x)   N2(x) ] . 






u1

*

u2
*  

     = [Ne] {qe} 

 

Behavior material and stiffness matrix 

Hooke law is defined as 11=E11 ; and finally, [C]=[E] 

Thus,  

 [Ke
*] = 





Ve

 
[Be]

t[C][Be]  dV  such as  [Be] = [- 
1

L
 

1

L
] 

And finally      [Ke
*] = ESe 





l

 









1

L²
  

-1

L²

 
-1

L²

1

L²

  dx  = 
ESe

Le
 






1  -1

 -1 1
 

8.6.4 From the local to global reference frame 

The previous stiffness matrix is defined in the local frame. The rotation leads to modify the 

expression of the stiffness into the global frame of the structure. 
 

0 x 

y 

i 

j 

e 

ui
*
 

ui 

vi 

uj
*
 

uj 

vj 

x
*
 

y
*
 



 

Let supposed {qe} and {Fe} be 

the nodal displacement and load 

on the element (e) expressed in 

the global frame. 

Let supposed {qe
*} and {Fe

*} be 

the nodal displacement and load 

on the element (e) expressed in 

the local frame (x*, y*). 

It is possible to express the movements of the nodes in the local frame, according to the 

movements in the global frame: 



 ui

*= ui cos   + vi sin  

uj
* = uj cos   + vj sin  

 

 

We can then express a matrix relationship between the movements in the local frame and the 

movements in the global frame:  

                                  






ui

*

uj
*

e

= 






cos  sin0       0

     0      0    cos    sin 
 









ui

vi

uj

vj 

e

 

           {qe
*} =       [e]  {qe}  

 

 

And then:          {Fe
*} =       [e]  {Fe}  
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However, we know that: 

{Fe
*} =  [Ke

*]{qe
*}  

{Fe
*} = [e] {Fe} =  [Ke

*] [e]{qe}  

Using the orthogonality properties of the transformation [e]
T[e]=[I] and multiplying by  

[e]
T, it comes: 

 {Fe} =  [e]
T [Ke

*] [e]{qe} 

with {Fe} =  [Ke] {qe} 

By identification:  

 [Ke]= [e]
T [Ke

*] [e] 

The stiffness matrix in the structural reference frame is deduced from this: 

[Ke]  = 











c  0 

s 0 

 0  c 

 0   s 

  
ES

L
  






1 -1

-1 1
 . 






c  s  0 0 

 0   0  c  s 
  Avec 



 c = cos

s = sin
 

Thus: 

[Ke]  =  
ES

L
 











c²  cs  - c²  - cs 

 cs  s²  - cs  - s² 

 - c²  - cs  c²  cs 

 - cs  - s²  cs  s²

 

8.6.5 Back to the application 

In the previous lattice assembly, the stiffness matrix is defined by: 

Be careful of the angular orientation 
   

 

 

 

 
 

 

 

 

 

Section S, Matériau : E 

1 2 

F 

 

A 

B C 

L 
- 



Knowing that: cos(-)= - cos()  

and                    sin(-)= sin() 



 

Truss AB :  

                   uA      vA      uB     vB    

[Ke
1] =  

ES

L/s
 











c²  -cs  - c²   cs 

 -cs  s²   cs  - s² 

 - c²   cs  c²  - cs 

  cs  - s²  -cs  s²

 

Truss AC :  

                    uA      vA         uC    vC 

[Ke
2] =  

ES

L/s
 











c²  cs  - c²  - cs 

 cs  s²  - cs  - s² 

 - c²  - cs  c²  cs 

 - cs  - s²  cs  s²

 

 

with 

 



 c = cos()

s = sin()
 

 

 

The assembly method requires that all components of the elementary matrices applying to the 

same degree of freedom be summed up. For the lattice, this leads to the following overall 

stiffness matrix: 
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uA      vA      uB     vB   uC    vC 

[K] = 
ES.s

L
   













c²+c² 0 -c² cs -c² -cs

0 s²+s² cs -s² -cs -s²

-c² cs c² -cs 0 0

cs -s² -cs s² 0 0

-c² -cs 0 0 c² cs

-cs -s² 0 0 cs s²

 

8.6.6 Exercise 1 

 

1. Definition of the boundary condition 

2. Solving of the problem 

 

 

8.6.7 Exercise 2: exploitation of the symmetrical condition 
   

 

 

 

 
 

 

 

 

 

Section S, Material: E 

2 

F/2 

 A 

C 

L 

 

Assuming that the problem is symmetric, it is proposed to 

study this equivalent problem formulation: 

 

Follows these steps: 

1. Definition of the assembly stiffness matrix 

2. Definition of the boundary condition 

3. Solving of the problem 
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9 Abaqus a finite element software 
The main objective of finite element software is to simulate the physical response of 

structures and solids to external solicitations like mechanical forces, temperatures, impacts 

and other external conditions. 

It is necessary to keep a “physical sense” of the simulations that you will have to perform. 

Indeed, the specificity of finite element software is to draw result through maps (very 

demonstrative information) but without any guarantee concerning the relevance of physical 

meaning. It is very important to know or predict the order of the quantities that you will 

expect and then, you will be able to analyze the truth of the computed results. Most of the 

time, complex structure and analyses could be simplified into a simple case for which 

analytical results are well known (e.g. from continuum mechanics).  

 

9.1 Computed modules of Abaqus  

There are two main modules available in the Abaqus software: 

- Standard Abaqus: following an implicit integration scheme (imposes the time increment, 

and the equilibrium state of the forces is deduced from it). That allows linear and non-linear 

problem solving, with 1D, 2D, Axisymmetric or 3D geometries. Many analysis procedures 

are available including time or frequency domain. 

- Explicit computation: Allows non-linear, transient and dynamic analyses of structures (e.g. 

Crash Test...). This explicit method of time integration still allows quasi-static studies with 

important non-linear behaviors. 

 

9.2 Added modules 

9.2.1 Abaqus/CAE : graphic environment 

The main interface for users of Abaqus is called Abaqus CAE; this graphical interface allows 

the creation of models, the runs of an analysis and the processing of results. 

9.2.2 Abaqus/Post : post traitement 

This graphical interface only allows the display of the results of an analysis such as 

isocontours, graphs,... 

9.2.3 Other modules : 

Abaqus/Design : configuration of the Abaqus models, Sensitivity analysis 

Abaqus/Safe : lifetime of a structure. 

9.3 CAD interface 

Compatibilities are possible with CAD software like Catia, Ideas, Creo... The use of neutral 

CAD format is another way to import complex geometry into Abaqus (Step, Iges…). 

9.4 Global use of Abaqus 

The Abaqus software is a solver that solves a problem described in a typical input file where 

data and sequences of the problem is fully defined. The resolution is written in an "output" 

file or result file. 
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  Input file 

.inp 
Solver  

Abaqus 

Result file 

.odb 
 

Figure 7 : Main steps of the computation into Abaqus 

9.4.1 Input file 

Extension : .inp 

Content: key words describing the geometry, the material properties, the boundary 

conditions… 

9.4.2 Result file 

Extension : .odb 

Content : contours, curves, result tables (compiled file) 

9.4.3 Other files 

File .com :run sequence of the computation 

File .dat : modeling summary file, also containing messages, calculation time.. 

File .msg : Summary file of the current calculation, list of error messages during the 

calculation process. 

9.5 How to make a simulation 

2 different ways are possible: 

 By creating your own input file using a text editor and knowing the different keywords 

(Abaqus Command and Abaqus viewer help and, of course, help) 

 By using the graphical interface 
  

Graphical 

area 

Message 

zone 

 

Command 

zone 

 
Icon zones 

 

Tree of 

the model 

 

 
To set up a simulation under Abaqus it requires to follow successively in the different 

modules: 

1. Part 

2. Property 

3. Assembly 

4. Step 

5. Interaction 



 34 

6. Load 

7. Mesh 

8. Job 

9. Visualization (to see the results) 

9.6 The main modules of Abaqus 

9.6.1 Part 

Creation of the structural parts of the simulation to be performed.  

 - These drawings can be directly created in Abaqus with the CAD modeler 

 - Or import (.sat,.iges,.stp,.prt,.wrml, ...) from other CAD software. 

   

  

Definition 

of line, 

arcs, … 

 

9.6.2 Property module 

Allows to create materials, 

assign sections, orientation 

markers (mainly for beams 

or shells), shape of 

profiles.... 
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9.6.3 Assembly Module 

This module allows to insert 

parts, to position them 

between others by geometric 

operations (translations, 

rotations) or with contact 

constraints  

 

 

   

9.6.4 Step Module 

Module for defining the 

type of calculation that 

will be performed (static, 

dynamic...) 

It is also necessary to 

choose the calculation 

variables that will be 

available in the 

exploitation of results and 

output data (History 

Output and Field Output). 

 

 

   

9.6.5 Interaction Module  

Module allowing to create 

interactions between parts, 

defines contact properties, 

create constraints, 

connectors (links)... 
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9.6.6 Load Module  

Definition of forces and 

boundary conditions, fields 

and loading conditions 

(temperature, pressure...) 

   

9.6.7 Mesh Module  

Creation of the partitions of 

the different entities, 

assigning the control of the 

mesh, choice of elements, 

mesh and verification tools. 

   

9.6.8 Job Module  

Creation of the calculation 

file, selection of the 

accuracy, number of 

processors used.... 
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9.6.9 Visualization Module  

Display of computed 

displacements of the 

structure, modes with results 

either in graphical form or as 

vectors. Animations during 

loading, choice of color 

palettes, creation of output 

fields with calculation 

options on the fields are also 

possible.... 
  

 

9.7 First example 

The purpose of this first example is to perform a tensile test. For this, we will realize 4 

different models of this operation. Either by using:  

 truss elements,  

 beam elements 

 shell elements 

and finally, solid elements. 

 

The tensile test is a test whose stresses are located in a plane, the plane of the specimen. This 

test is a standardized test from which the main characteristics of the material are derived. 

 

9.7.1 Conditions of the test 
  

140mm 
20mm 

thickness 1mm 

F=200N 

 

The material used is an aluminum alloy. The 

plastic behavior is linear, with: 

E = 80 000MPa 

=0.3 

Density = 2700kg/m3 

 

Steady state simulation. 

 

The part is blocked into the tensile test 

machine.  

Attention : verify if the units of the model are homogeneous 

Static (i.e. abaqus standard formulation), you can work either in 

millimeters or meter 

In dynamics, work only in units of the International System (m). 
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9.7.2 Analytical analysis of the problem 

In order to quickly determine the expected forces, stresses and deformations, it is necessary to 

make a simple model of the bar in tension. Deduce the main quantities from this. These 

values can be directly compared to the computed values by Abaqus. 

 

9.7.3 Truss / beam model 

Be careful, it is advisable to regularly save your work all along the progress of the practical 

work ! 

 

Create a new file called « Traction_Beam » 

 

Module part : 

Create part 2D planar, deformable, option Wire. Design the length of the line corresponding 

to the part. 

Module material 

Create a material designated by « alu », in 

the general menu, define the density.  

Then, go to Mechanical menu and define the 

elastic behavior of the material (Elastic). 

Go to section menu, select Beam, then, 

create a profile, rectangular and define the 

dimensions of the part section (pay attention 

to the orientation of the axis). Attribute the 

material to the part. 

 

  
 

 

Assembly Module 

Import the created beam and position it to the origin of the frame. 

 

Step Module 

Create a computed step, call it “traction”, 

select Static, general 

 

Have a look of the computed value during 

the simulation Fields output and History 

Output. 

   
Interaction Module 

A priori, during this particular test, there is no interaction between different parts. Therefore, 

there is nothing to report. 
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 Load Module 

  Create a Force type load applied to the 

end of the beam.  

  
 Declare the embedding conditions at the 

other end of the specimen 

  
 

Mesh Module 

You should select the element type B21 or 31, verify in the horizontal menu Mesh  Element 

type. 

Then, you should create seeds to determine the size of the mesh and then to generate the 

mesh. 

In this case, use 10 elements. 

 

Job Module 

Create a new run called « tensile ». Generate the input file by the means of a button Write 

input ; Then, submit the run through the button Submit. 

You can read the status of the run, if the status is "complete", everything is OK and you can 

see the computed results (in the next module), else go the Monitor menu, to identify the 

errors in the model. 

 

Finally, go to the results by clicking on Results. 

Visualization Module  

Display the different results and compare them with those expected (see Theoretical study of 

tensile test) 

  

Visualisation 

of results 

Selection of computed variables to show: 

Result  Field Output. 

 
Conclusion… 

Store of the results. 

 

Complementary analysis 
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1. Return to the Mesh module, and mesh the part with a single element. Run the 

calculation, view the results. Conclusion 

 

2. Return to the Mesh module and mesh with 100 elements. Conclusion. 

 

9.7.4 Shell Model 

It is proposed to carry out a tensile test this time with shell "shell" elements. 

 

Create a new file called "Tensile_shell". 

 

Part Module  

Select 3D, Deformable, Shell, Planar. 

Draw a rectangular shape corresponding to 

the front side of the part (140 x 20 mm). 

   
 

Property Module  

Define the material with the same option as previously.  

 

Menu Create Section, Name : Eprouvette, Option Shell, Homogeneous. Then, define the 

thickness of the shell : 1 mm, and attribute these properties to the part. 

Menu Assign Section, select the specimen. 

 

Assembly Module 

Select the Independant option (the mesh will be created through the Mesh menu). 

 

Step Module  

Same steps as for the previous analysis. 

 

Load Module  

Define the loading and boundary conditions. 

 

Mesh Module  

Leave the default size for seeds. Mesh. 

 

Job Module  

Same steps as for the previous analysis. 

 

Visualization Module  

Comment the results. Compared with those previously obtained. 

 

Complementary studies 

1. Decrease the element size of the mesh. Restart the calculation. Conclusion. 
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2. Set up a very regular square mesh (3 mm wide). Use the mesh structured option in the 

Assign Mesh Control menu. Restart the calculation. Conclude. 

9.7.5 Solid Model  

Module part 

3D, Solid, Deformable, Option extrusion. Draw the cross section of the specimen and extrude 

it from the value of the height of the specimen. 

 

The rest of the steps are almost similar than the previous ones following for the Shell. 

Attention to specific options (material option, definition of boundary conditions…) 

 

Analysis of the main results. 

9.8 Analysis of the embedded conditions 

View the stress values at the load application zone. Does that seem normal to you? 

View the detail of the stress state located on the embedding zone. What do you think of that? 

What do you propose? Implement it. 

9.9 Compressive simulation 

Take the model and adapt it to make a compression test with a force of 200N. 

 

Start the calculation and look at the results. 

 

What do you think of that? Does this seem realistic? 
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10 Various case studies 

10.1 Beam study 

We want to study a very simple case, the performances of a beam element “B31” and “B32”. 

The B31 and 32 elements are planar beam elements: 2 nodes at the ends and 3dof per node 

(Ux, Uy and Rz). We can therefore apply forces to them according to X, Y and a moment 

according to Z.  

 

The beam to be studied is shown below. It is made of steel material (210GPa, =0.28), 

rectangular in cross-section and subjected to a concentrated force F. 

 

In the case of a bending beam, the following relationship can be written: 

y''(x) = 
Mfz(x)

EI
  

  F 
Geometry of the specimen and loadings : 

b=0.1m ; 

L=4m ; 

F=2000N ; 

h= 0.15m 

 

10.1.1 Study of a thin beam subjected to concentrated load 

Q1. From the relationship between the value of the bending moment and the second 

derivative of the vertical position, give the theoretical value of the displacement. What should 

be the order of the polynomial that would give an exact interpolation of the displacement. 

Q2. Set up a finite element model using only one B21 element. Read the value of the 

calculated displacement. 

Q3. Set up a finite element model using eight B21 elements. Then eighty B21 elements. 

Compare the values obtained and the accuracy against the calculated theoretical value. 

Q4. Follow the same approach with B22 elements with 1, 8 and 80 elements. Conclude. 

 

10.1.2 Study of a thin beam subjected to linear loading 

  

q 
Geometry and loads: 

b=0.1m ; 

L=4m ; q=500N/m ; h= 0.15m 

 

10.1.2.1 Simulation with only one Beam element (B21 & B22) 

Q1. From the relationship between the value of the bending moment and the second 

derivative of the vertical position, give the theoretical value of the displacement. What should 

be the order of the polynomial that would give an exact interpolation of the displacement. 
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Q2. Store the different obtained results for 8 and 16 elements. Conclude. 

10.1.2.2  Set up of a 2D model 

The objective is to build the same problem using 2D elements. Several meshes are proposed. 

For each of them, analyze and compare the results and then draw conclusions on the validity 

of the used meshes. 

 

Case 1. Mesh with 4 triangular elements: (CPS6M: 6-nodes and 2dof) 
  q 

 
 

Case 2. Mesh with 8 triangular elements: CPS4 and CPS8 (4 or 8 nodes, 2dof) 
  q 

 
 

10.1.2.3 Set up of 3D model 

Set up a model with a single layer of elements in the thickness and 6 elements in the length. 

The elements to be used are: C3D8 (8 nodes with 3dof). Compared with the previous results. 
  q 
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10.1.3 Creating a flat articulated support  

The creation of an articulated structure can be done in different ways. It is possible to create 

mechanical connections between elements (ball joint, pivot, point...). To do this, options in 

the "interaction" menu of Abaqus allows you to declare them. 

 

Another approach is based on identifying the degrees of freedom of the selected elements. For 

example, if you want to make a ball joint, you can use bar elements for which there are hinges 

at each end. We propose on a simple case to present these two approaches:  

 Using the properties of the elements 

 Creating a link between elements 

 

10.1.3.1 Case study 
 

 

 

The material used is a polycarbonate plastic with the 

following characteristics: 

 E = 2400 MPa, =0.3 

Geometrical dimension : L = 200 mm and P=10N 

The cross section has a circular shape with a diameter of 

5 mm. 

 

At each end, there is a pivot connection.  

10.1.3.2 By the means of element property 

By analyzing the load modes of this structure, we can see that part 2 works in tension and part 

1 in compression. In the course, we identified elements that had hinges at each end and were 

working in tension/compression (the truss element).  

In order to use these properties in the creation of a model on Abaqus, the following 

specifications are proposed: 

1. In the Part menu: create a unique part regrouping the two frames 1 and 2. 

2. In the Property menu: define the property of the truss.  

3. The next step of the model definition remains the same as for other analysis.  

4. Define the boundary conditions to the nodes number 1 and 3. 

5. In the Mesh menu: define on both the zone of the structure (zones 1 and 2), only one 

truss element for each. This operation will generate a ball joint between each of the 

parts. 

6. Run the calculation and conclude on the relevance of the results between the model 

and the imposed solicitations. 

10.1.3.3 Definition of mechanical joints between elements 

We used beam elements to model both tension/compression, bending and shear. All degrees 

of freedom are locked at each end of the element. In order to impose a pivot joint, it is 

necessary to make a connection with 2 parts and to declare a pivot joint in point 2. 

For this purpose, it is proposed to: 

1. In the Part menu: create 2 separate parts 

2. In the Property menu: define beam property.  

3. In the Assembly menu: make the assembly of the 2 parts. 
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4. In the Interaction menu: define the kinematic constraints (create constraint ). 

Select the joint type (Coupling), then, select the 2 points corresponding to the 

intersection between the 2 parts. (position of the joint at point number 2).  

 

 

We want to create a kinematic type coupling, by 

requiring that the Ui translations are identical between 

the 2 parts. 

Select the appropriate options in the dialog box as shown 

on the left. 

 

 

 

5. Define the boundary conditions in points 1 and 3. 

6. In the Mesh menu: define the characteristic of the beam element (parts 1 and 2). 

7. Run the simulation and conclude on the obtained results. 

10.1.3.4 Additional computation and analysis 

We propose, in order to train you (for the exam), to carry out the theoretical study of this 

assembly (2 bars), one of which is inclined. 

According to the literature, we can explain 

the stiffness matrix of the inclined frame 

oriented by an angle : 

 

[Ke]  =  
ES

L
 











c²  cs  - c²  - cs 

 cs  s²  - cs  - s² 

 - c²  - cs  c²  cs 

 - cs  - s²  cs  s²

 

 

In our case, the angle is equal to 135° (the 

horizontal reference corresponds to the x axis 

oriented on the right), we finally obtain: 

[K2] = 
ES2 

2L2
 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

  
  
 
  
 

  

 

 

 

From the previous data:  

1. Express the stiffness matrices of each bar (horizontal and inclined) + lengths. 

2.  Assemble the different stiffness matrix to form the global stiffness matrix of the 

structure. 

3. Define the adapted boundary conditions 

4. Solve the equations and compare with the results obtained during the practical analysis 

(through Abaqus). 
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Some correction elements:  

For each bar the lengths are respectively: L1=200mm ; L2= 200/(sin 45°) = 282.8mm 

Assuming that k2 = ES2/2L2 and k1=ES1/L1, we can define the following global stiffness 

matrix: 

Kass=











k1  − k1  0  0  0 

 − k1  k1 + k2  − k2  − k2  k2 

 0  − k2  k2  k2  − k2 

 0  k2  − k2  − k2  k2

 

By considering the boundary condition, we can obtain: 

Limit cond.. :  u1=u3=v3=0 ; 

F2y = -P ; 

 



 ( k1+k2 )u2 − k2v2 = 0

− k2u2  + k2v2 = −P
  u2 = 

− P

k1
  and v2= 

− p

k2
(1+

k2

k1
) 

 

You can directly compare the present values to the values computed by the means of Abaqus. 

 

 

 



 47 

 

10.1.4 Lattice / Gantry  structure 

The objective of this study is to study the deformation and stresses in the bars or beams of a 

lattice or gantry structure, subject to planar loading  

 
  

L= 8m 

h= 2m 

1 2 3 4 

5 

6 7 

8 9 10 11 12 13 

F= 50 000N 

 
We consider 2 different cases with the same kind of loads : 

 Structure A. lattice structure composed of articulated bars 

 Structure B. gantry structure composed of welded bars. 

 

Les bars 1 to 8 are made of tubes with an external diameter of 60.3mm and a thickness of 

2.9mm. 

The bars 9 to 13 are made of tubes with an external diameter of 21.3mm and a thickness of 

2.3mm.  

The material for all tubes is steel (E=210GPa, =0.3) 

 

10.1.4.1 Work to be done 

 On structure A: 

What type of element can be chosen to mesh the structure? 

Compare the reactions to the supports calculated with Abaqus and analytically 

Read the vertical displacement of node n2. 

Read the axial forces in each of the bars. What do you think of that? 

 

 On structure B : 

What type of element can be chosen to mesh the structure? 

How can we check that the bars are welded together? 

Read the vertical displacement of node n2 and the axial forces in each of the bars. Compared 

with the values found above? 

Remove the least stressed beam. Conclusion. 

What happens if the number of elements is increased (e.g. 5 elements per bar). 
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