

Collège Sciences et technologies Année 2021-2022

CYCLE PREPARATOIRE - EXAMEN TERMINAL

Epreuve : Chimie générale (4TBX101U)

Date: 14 janvier 2022

Durée: 1h30

Sans documents, calculatrice autorisée Epreuve de MM. Castet et Crespos

Exercice 1. Spectroscopie des hydrogénoïdes (2 points)

On veut utiliser un rayonnement UV pour dégrader une matière plastique azotée par rupture des liaisons carbone-azote. L'énergie de liaison est de 279,6 kcal.mol⁻¹.

- 1) Quelle doit être la longueur d'onde (en nm) du rayonnement utilisé pour rompre une liaison C-N ?
- 2) Pour produire cette radiation on utilise le spectre d'émission de l'hydrogène. Quelle transition de la série de Lyman doit-on sélectionner ?

Exercice 2. La molécule SF₃Cl (3 points)

On considère la molécule de SF₃Cl, dont le soufre occupe la position centrale.

- 1) Ecrire la configuration électronique de valence de chaque atome présent dans la molécule.
- 2) Ecrire la structure de Lewis de la molécule.
- 3) Donner la structure de l'environnement électronique de l'atome de soufre en utilisant la nomenclature VSEPR.
- 4) Indiquer l'état d'hybridation de l'atome de soufre.
- 5) La molécule de SF₃Cl peut se présenter sous la forme de deux isomères de géométrie différente. Schématiser les figures de répulsion des deux isomères.

Exercice 3. Energie potentielle d'une liaison covalente (6 points)

L'énergie d'interaction entre les deux atomes d'une liaison H–X peut s'exprimer sous la forme d'un potentiel modèle, appelé *potentiel de Morse* :

$$V(R) = -2De^{-\alpha(R-R_0)} + De^{-2\alpha(R-R_0)}$$

où R est la distance entre les atomes, et D, α , et R_0 sont des paramètres constants tous strictement supérieurs à zéro.

- 1) Donner la valeur limite du potentiel V(R) quand $R \to +\infty$.
- 2) Déterminer l'expression de la dérivée du potentiel V(R) par rapport à R.
- 3) Déterminer la valeur de R pour laquelle le potentiel V(R) est minimum.
- 4) Calculer la valeur du potentiel V(R) pour $R = R_0$. En déduire la signification physique du paramètre D.
- 5) Déterminer la valeur de R telle que V(R) = 0. En déduire le domaine de variation de R correspondant à un potentiel attractif.
- 6) Représenter qualitativement sur un graphique l'évolution du potentiel V(R) en fonction de R.
- 7) Le tableau suivant reporte les valeurs de R_0 pour une série de molécules diatomiques. Déduire de ces valeurs le rayon covalent des atomes H, Li, Be et B.

Molécule	Н–Н	H–Li	Н–Ве	Н–В
R_0 (Å)	0,741	1,595	1,343	1,232

8) Justifier l'évolution du rayon covalent dans cette série d'atomes.

Exercice 4. Décomposition du nitrate d'ammonium (4 points)

Le nitrate d'ammonium NH₄NO₃ est une poudre solide compacte et relativement instable. A haute température, il se décompose en libérant de la chaleur et en formant des produits gazeux selon la réaction ci-dessous :

$$NH_4NO_{3(s)} \rightarrow N_{2(g)} + \frac{1}{2}O_{2(g)} + 2H_2O_{(g)}$$

On place 10 g de NH₄NO₃ dans une enceinte fermée dont le volume est 10 L, et on porte la température à 400°C. Les masses molaires des éléments H, N et O sont respectivement égales à 1,0 g/mol, 14,0 g/mol et 16,0 g/mol.

- 1) Calculer le nombre total initial n_0 de nitrate d'ammonium.
- 2) Etablir un tableau d'avancement de la réaction en indiquant la quantité de matière à l'instant initial (t_0) , à un instant t quelconque, et en fin de réaction (t_∞) en supposant que le réactif a été intégralement consommé.
- 3) Calculer la pression P_{∞} (en atm) en fin de réaction.
- 4) Calculer le nombre de nombre de moles de NH₄NO₃ consommées lorsque la pression totale à l'intérieur de l'enceinte est égale à 2 atm.

Exercice 5. L'oxyde de nickel (5 points)

L'oxyde de nickel NiO est un cristal ionique qui cristallise dans le système de type chlorure de sodium, dans lequel les ions Ni²⁺ et O²⁻ forment deux réseaux cubiques faces centrées imbriqués de paramètre de maille a = 4,177 Å. Anions et cations sont en contact. Les masses molaires de Ni et O sont respectivement égales à 58,69 g/mol et 16 g/mol.

- 1) Déterminer le nombre d'ions présents dans la maille et le nombre de motifs NiO par maille.
- 2) Etablir la relation littérale permettant d'accéder à la masse volumique ρ du cristal NiO. Calculer sa valeur en g.cm⁻³.
- 3) Déterminer la relation entre les rayons ioniques et le paramètre de la maille. Sachant que le rayon de l'oxygène est égal à 1,4 Å, calculer le rayon ionique du nickel.
- 4) Calculer la compacité du cristal NiO.
- 5) L'oxyde de nickel réagit avec l'oxyde de chrome trivalent en présence d'oxygène gazeux pour donner le chromate de nickel selon la réaction ci-dessous :

$$2 \ Cr_2O_{3 \ (s)} + 4 \ NiO_{\ (s)} + 3 \ O_{2 \ (gaz)} \longrightarrow 4 \ CrNiO_{4 \ (s)}$$

Sachant que le degré d'oxydation du nickel ne varie pas au cours de la réaction, déterminer le degré d'oxydation du chrome dans le chromate de nickel CrNiO₄.

GRANDEURS PHYSIQUES (Unités du Système International ou dérivées)

Grandeur	Symbol	Valeur	Unité
vitesse de la lumière permittivité du vide constante de Planck charge élémentaire masse de l'électron masse du proton rayon de Bohr constante de Rydberg constante d'Avogadro	c $arepsilon_0$ h e $m_{ m e}$ $m_{ m p}$ a_0 $R_{ m H}$ $N_{ m A}$	2,9979.108 8,8542.10-12 6,6261.10-34 1,6022.10-19 9,1094.10-31 1,6726.10-27 0,5292.10-10 1,0974.107 6,0221.10 ²³	m.s ⁻¹ F.m ⁻¹ (= m ⁻³ .kg ⁻¹ .s ⁴ .A ²) J.s C (= s.A) kg kg m m ⁻¹ mol ⁻¹
-	•		
constante d'Avogadro constante de Faraday	N _A F	6,0221.10 ²³ 96485	mol ⁻¹ C.mol ⁻¹
constante des gaz parfaits	R	8,3145	J.mol ⁻¹ .K ⁻¹

UNITÉS DU SYSTÈME INTERNATIONAL

longueur[L]mmètremasse[M]kgkilogrammetemps[T]ssecondetempérature[Θ]KKelvinintensité électrique[I]AAmpèrequantité de matière[N]molmoleintensité lumineuse[J]candelacd	Grandeur	[Symbol]	Unité	Nom
	masse	[M]	kg	kilogramme
	temps	[T]	s	seconde
	température	[Θ]	K	Kelvin
	intensité électrique	[I]	A	Ampère
	quantité de matière	[N]	mol	mole

PRINCIPALES UNITÉS DÉRIVÉES

Grandeur	Unité	Nom	Correspondance
force	N	Newton	1 N = 1 kg.m.s ⁻²
énergie	J	Joule	1 J = 1 N.m
-	cal	calorie	1 cal = 4,184 J
	eV	electron-Volt	1 eV = 1,6022.10 ⁻¹⁹ J
pression	Pa	Pascal	$1 \text{ Pa} = 1 \text{ N.m}^{-2}$
	atm	atmosphère	1 atm = 1,013.10 ⁵ Pa
	bar	bar	1 bar = 10 ⁵ Pa
	mmHg	mm de mercure	760 mmHg = 1 atm
charge électrique	С	Coulomb	1 C = 1 A.s
	F	Faraday	1 F = 96485 C.mol ⁻¹
potentiel électrique	V	Volt	$1 \text{ V} = 1 \text{ N.m.C}^{-1}$
capacité électrique	F	Farad	$1 F = 1 C.V^{-1}$
moment dipolaire	D	Debye	$1 D = 3,335.10^{-30} C.m$
volume	l	litre	$1 L = 10^{-3} m^{-3}$
température	°C	degré Celsius 	T [°C] = (T[K] – 273.15)