
More exercises on maximal solutions

1 Exercise 1

We consider the differential equation

y′(t) = y(t) sin2(y(t))

1. What are the constant functions that are solutions of this differential equation ?

We assume that y = C, ∈ R is a constant solution of the differential equation. Therefore

y′(t) = 0 = C sin2(C).

It means that either sin2(C) = 0⇔ C = kπ with k ∈ Z, or C = 0, which is a particular case
of the first possibility.

At the end, the constant solutions of the differential equations are all the functions y, y = kπ
with k ∈ Z. They are by the way maximal solutions, because they are defined on R.

2. Let y be a maximal solution satisfying y(0) = y0. Prove that y is bounded and monotonous.

Let k0 ∈ Z be such that k0π ≤ y0 < (k0 + 1)π. There are two possibilities :

• y0 = k0π.

In this case y is a constant solution, thus it is bounded and monotonous,

• k0π < y0 < (k0 + 1)π.

Let us assume that y is not bounded. Then there exists a t such that y(t) = k0π or
y(t) = (k0 + 1)π. It would mean that the graphs of y and of a maximal constant solution
do cross, which is not possible, due to the unicity property. Therefore, y is bounded between
k0π and (k0 + 1)π.

Moreover, we know that
y′ = y sin2(y)︸ ︷︷ ︸

≥0

Therefore y′ has the same sign than y. We know that y stays always bounded between k0π
and (k0 + 1)π with k ∈ Z, therefore y has always the same sign. Consequently, y′ is always
positive or always negative, which means that y is monotonous.

3. Prove that y is defined over R.

We use the theorem 0.4 of the course (explosion of the solution). The function y is defined
over an interval ]a, b[, with a and b either reals or infinite values. If b 6= +∞, then it means
that y(t) tend to ±∞ when t tend to zero, which is not possible since y is bounded. Therefore,
b = +∞. We do the same reasoning to prove that a = −∞. As a conclusion, y is defined over
R.
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2 Exercise 2

We consider the differential equation

y′(t) = cos(y(t)) +
1

2
sin(t)

1. With a graphical analysis, find some horizontal barriers. Prove that they are indeed barriers.
On the picture available, you can see a schematic representation of the phase field. Notably,
you can observe that the horizontal line y = π seems to be a barrier that repells the solutions
standing under it, because the slope of the tangent field is always negative on this line.

Similarly, the horizontal line y = 0 seems to be another barrier repelling positive solutions
above it because the slope of the tangent field is always positive on this line.

We check that the associated constant functions are indeed barriers, that is, sub- or super-
solutions of the differential equations :

• If g1(t) = π ∀t ∈ R then g′1(t) = 0 > −1
2 > −1 + 1

2 sin(t) = cos(g1(t)) + 1
2 sin(t) ∀t ∈ R.

Therefore g(t) = π is a supersolution of the differential equation.

• If g2(t) = 0 ∀t ∈ R then g′2(t) = 0 < 1
2 < 1 + 1

2 sin(t) = cos(g2(t)) + 1
2 sin(t) ∀t ∈ R.

Therefore g(t) = 0 is a subsolution of the differential equation.

2. Let f be the solution satisfying the initial condition f(0) = 0. Prove that f is bounded and defined over R.
The solution f has its initial condition equal to the subsolution g1(t) = 0, therefore for all
t > 0, f(t) > g1(t) = 0.

Similarly, f has its initial condition smaller to the subsolution g2(t) = π, therefore for all
t > 0, f(t) < g2(t) = π. Therefore, f is bounded. Using the same reasoning as in the previous
exercice, we can conclude that f is defined on [0,+∞[.

The same reasoning about sub- and supersolution can be performed with all constant func-
tions :

y(t) = π + 2kπ, k ∈ Z

that are super-solutions, and
y(t) = 2kπ, k ∈ Z

that are sub-solutions.

With the extension theorem, it is then possible to prove that f is defined on R. Let us assume
that f cannot be extended to R. It means that there exists ξ ∈ R− such that |f(t)| tends to
+∞ when t tends to ξ. But if it is the case, then the graph of f necessarily crosses the graph
of one of these sub- or subsolutions, which is not possible. Therefore, f can be extended to R.

3. Prove that every solution is bounded and defined over R.

Every solution, whatever its initial condition, can be bounded by a super-solution and a
sub-solution of the form described in the previous question. Therefore, the reasoning of the
previous question can be used again.
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