More exercises on maximal solutions

1 Exercise 1

We consider the differential equation

$$
y^{\prime}(t)=y(t) \sin ^{2}(y(t))
$$

1. What are the constant functions that are solutions of this differential equation?
2. Let y be a maximal solution satisfying $y(0)=y_{0}$. Prove that y is bounded and monotonous.
3. Prove that y is defined over \mathbb{R}.

2 Exercise 2

We consider the differential equation

$$
y^{\prime}(t)=\cos (y(t))+\frac{1}{2} \sin (t)
$$

1. With a graphical analysis, find some horizontal barriers. Prove that they are indeed barriers.
2. Let f be the solution satisfying the initial condition $f(0)=0$. Prove that f is bounded and defined over \mathbb{R}.
3. Prove that every solution is bounded and defined over \mathbb{R}.
