
Electronic structure of Solids I



Free electron gas model (Fermi gas)

A free electron model is the simplest way to represent the electronic structure of
solids such as metals.

Although the free electron model is a great oversimplification of the reality, is able to
describe many important properties of conductors.

• Valence electrons are considered to travel freely
throughout the crystal, neglecting the interaction
of electrons with ions of the lattice and the
interaction between electrons

• Pauli principle is taken into account.

Fermi Gas :

Enrico Fermi (1901 – 1954)
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Section 7:  Free electron model 
 
A free electron model is the simplest way to represent the electronic structure of metals. Although 
the free electron model is a great oversimplification of the reality, surprisingly in many cases it 
works pretty well, so that it is able to describe many important properties of metals.  
According to this model, the valence electrons of the constituent atoms of the crystal become 
conduction electrons and travel freely throughout the crystal. Therefore, within this model we 
neglect the interaction of conduction electrons with ions of the lattice and the interaction between 
the conduction electrons. In this sense we are talking about a free electron gas. However, there is a 
principle difference between the free electron gas and ordinary gas of molecules. 
First, electrons are charged particles. Therefore, in order to maintain the charge neutrality of the 
whole crystal, we need to include positive ions. This is done within the jelly model, according to 
which the positive charge of ions is smeared out uniformly throughout the crystal. This positive 
background maintains the charge neutrality but does not exert any field on the electrons. Ions form 
a uniform jelly into which electrons move. 
Second important property of the free electron gas is that it should meet the Pauli exclusion 
principle, which leads to important consequences. 

One dimension 
We consider first a free electron gas in one dimension. We assume that an electron of mass m is 
confined to a length L by infinite potential barriers. The wavefunction ( )n xψ  of the electron is a 
solution of the Schrödinger equation ( ) ( )n n nH x E xψ ψ= , where En is the energy of electron orbital. 
Since w can assume that the potential lies at zero, the Hamiltonian H includes only the kinetic 
energy so that  

2 2 2

2( ) ( ) ( ) ( )
2 2n n n n n
p dH x x x E x
m m dx

ψ ψ ψ ψ= = − =
! . (7.1) 

Note that this is a one-electron equation, which means that we neglect the electron-electron 
interactions. We use the term orbital to describe the solution of this equation.   

Since the ( )n xψ  is a continuous function and is equal to zero beyond the length L, the boundary 
conditions for the wave function are (0) ( ) 0n n Lψ ψ= = . The solution of Eq.(7.1) is therefore 

( ) sinn
nx A x

L
π

ψ ! "= # $
% &

, (7.2) 

where A is a constant and n is an integer. Substituting (7.2) into (7.1) we obtain for the eigenvalues  
22

2n
nE

m L
π! "= # $
% &

! . (7.3) 

These solutions correspond to standing waves with a different number of nodes within the potential 
well as is shown in Fig.1.   

1D-conductor = “particle in a 1D-box”

We assume that an electron of mass m is confined to a length L by infinite 
potential barriers. 

ECE 3080 - Dr. Alan DoolittleGeorgia Tech

How do electrons and holes populate the bands?
Derivation of Density of States Concept

First a needed tool:  Consider an electron trapped in an energy well with infinite potential barriers.  
Recall that the reflection coefficient for infinite potential was 1 so the electron can not penetrate the 
barrier.

After Neudeck and Pierret Figure 2.4a
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well as is shown in Fig.1.   

1D-conductor = “particle in a 1D-box”

We assume that an electron of mass m is confined to a length L by infinite 
potential barriers. 
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These solutions correspond to standing waves with a different number of nodes within the potential 
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SOLUTIONS :

ECE 3080 - Dr. Alan DoolittleGeorgia Tech

How do electrons and holes populate the bands?
Derivation of Density of States Concept

First a needed tool:  Consider an electron trapped in an energy well with infinite potential barriers.  
Recall that the reflection coefficient for infinite potential was 1 so the electron can not penetrate the 
barrier.

After Neudeck and Pierret Figure 2.4a
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Fig.1 First three energy levels and wave-functions of a free electron of mass m 
confined to a line of length L. The energy levels are labeled according to the 
quantum number n which gives the number of half-wavelengths in the 
wavefunction. The wavelengths are indicated on the wavefunctions.  

 
Now we need to accommodate N valence electrons in these quantum states. According to the Pauli 
exclusion principle no two electrons can have their quantum number identical. That is, each 
electronic quantum state can be occupied by at most one electron. The electronic state in a 1D 
solid is characterized by two quantum numbers that are n and ms, where n describes the 
orbital ( )n xψ , and ms describes the projection of the spin momentum on a quantization axis. 
Electron spin is equal to S=1/2, so that there (2S+1)=2 possible spin states with ms = ±½.  
Therefore, each orbital labeled by the quantum number n can accommodate two electrons, 
one with spin up and one with spin down orientation. 
Let nF denote the highest filled energy level, where we start filling the levels from the 
bottom (n = 1) and continue filling higher levels with electrons until all N electrons are 
accommodated. It is convenient to suppose that N is an even number. The condition 2nF = N 
determines nF, the value of n for the uppermost filled level. 
The energy of the highest occupied level is called the Fermi energy EF. For the one-
dimensional system of N electrons we find, using Eq. (7.3), 

22

2 2F
NE

m L
π! "= # $
% &

! . (7.4) 

In metals the value of the Fermi energy is of the order of 5 eV. 
The ground state of the N electron system is illustrated in Fig.2a: All the electronic levels are filled 
upto the Fermi energy. All the levels above are empty.   

The Fermi distribution 
This is the ground state of the N electron system at absolute zero. What happens if the temperature 
is increased? The kinetic energy of the electron gas increases with temperature. Therefore, some 
energy levels become occupied which were vacant at zero temperature, and some levels become 
vacant which were occupied at absolute zero. The distribution of electrons among the levels is 

Fermi energy (for a system of N electrons)

One need to accomodate N electrons in the
various quantum states of the particle in a
box.

The highest occupied state = Fermi level
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usually described by the distribution function, f(E), which is defined as the probability that the level 
E is occupied by an electron. Thus if the level is certainly empty, then, f(E) = 0, while if it is 
certainly full, then f(E)  = 1. In general, f(E)  has a value between zero and unity.   

 
 

Fig. 2   (a) Occupation of energy levels according to the Pauli exclusion 
principle, (b) The distribution function f(E), at T = 0°K and T> 0°K. 

 
It follows from the preceding discussion that the distribution function for electrons at T = 0°K has 
the form 

,1
( )

,0
F

F

E E
f E

E E
<!

= "
>#

. (7.5) 

That is, all levels below EF are completely filled, and all those above EF are completely empty. This 
function is plotted in Fig. 2(b), which shows the discontinuity at the Fermi energy. 
When the system is heated (T>0°K), thermal energy excites the electrons. However, all the electrons do 
not share this energy equally, as would be the case in the classical treatment, because the electrons 
lying well below the Fermi level EF cannot absorb energy. If they did so, they would move to a higher 
level, which would be already occupied, and hence the exclusion principle would be violated. 
Recall in this context that the energy which an electron may absorb thermally is of the order kBT ( = 
0.025 eV at room temperature), which is much smaller than EF, this being of the order of 5 eV. 
Therefore only those electrons close to the Fermi level can be excited, because the levels above EF are 
empty, and hence when those electrons move to a higher level there is no violation of the exclusion 
principle. Thus only these electrons - which are a small fraction of the total number - are capable of 
being thermally excited. 
The distribution function at non-zero temperature is given by the Fermi distribution function. The 
derivation is presented in the appendix D of the textbook. The Fermi distribution function determines 
the probability that an orbital of energy E is occupied at thermal equilibrium  

( ) /
1( )

e 1BE k Tf E µ−=
+

. (7.6) 

This function is also plotted in Fig. 2(b), which shows that it is substantially the same as the 
distribution at T = 0°K, except very close to the Fermi level, where some of the electrons are excited 
from below EF  to above it.  

The quantity µ is called the chemical potential. The chemical potential can be determined in a way 
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3D-conductor = particle in periodic box

Periodic boundary conditions = we assume that the crystal is infinite in x, y and z 

The solution of the Schrödinger equation which satisfies these boundary conditions, 
called Born - von Karman periodic conditions, has the form of a traveling plane wave: 
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that the total number of electrons in the system is equal to N. At absolute zero FEµ = .  

Three dimensions 
The Schrödinger equation in the three dimensions takes the form 

2 2 2 2 2 2
2

2 2 2( ) ( ) ( ) ( ) ( )
2 2 2
pH E
m m m x y z

ψ ψ ψ ψ ψ
! "∂ ∂ ∂

= = − ∇ = − + + =# $∂ ∂ ∂% &
r r r r r! ! . (7.7) 

If the electrons are confined to a cube of edge L, the solution is the standing wave 

( ) sin sin sinyx z
nn nA x y z

L L L
ππ π

ψ
! "! " ! "= # $ # $# $

% &% & % &
r , (7.8) 

where nx, ny, and  nz are positive integers.  
In many cases, however, it convenient to introduce periodic boundary conditions, as we did for 
lattice vibrations. The advantage of this description is that we assume that our crystal is infinite and 
disregard the influence of the outer boundaries of the crystal on the solution. We require then that 
our wavefunction is periodic in x, y, and z directions with period L, so that 

( , , ) ( , , )x L y z x y zψ ψ+ = , (7.9) 

and similarly for the y and z coordinates. The solution of the Schrödinger equation (7.7) which 
satisfies these boundary conditions has the form of the traveling plane wave: 

( ) exp( )A iψ = ⋅r k r , (7.10) 

provided that the component of the wavevector k are determined from  

22 2; ;yx z
x y z

nn nk k k
L L L

ππ π
= = = , (7.11) 

where nx, ny, and  nz are positive or negative integers.  
If we now substitute this solution to Eq.(7.7) we obtain for the energies of the orbital with the 
wavevector k 

( )
2 2 2

2 2 2

2 2 x y z
kE k k k
m m

= = + +k
! ! . (7.12) 

The wavefunctions (7.10) are the eigenfunctions of the momentum i= − ∇p ! , which can be easily 
seen by differentiating (7.10) : 

( ) ( ) ( )iψ ψ ψ= − ∇ =k k kp r r k r! ! . (7.13) 

The eigenvalue of the momentum is k! . The velocity of the electron is defined by 
/ /m m= =v p k! . 

In the ground state a system of N electrons occupies states with lowest possible energies. Therefore 
all the occupied states lie inside the sphere of radius kF.  The energy at the surface of this sphere is 

With a quantized wave vector k:
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Quantization of electronic energy

2.1. ETAT FONDAMENTAL À T = 0 K 3

Il faut ensuite choisir des conditions aux limites sur les faces de ce cube
tenant compte de ce que l’électron reste confiné dans le cube. Ces conditions
ne devraient pas a↵ecter les propriétés du métal massif. Un choix possible,
correspondant à |U | = 1, serait d’imposer que  (r) s’annule sur les faces
du cube. On obtiendrait des ondes stationnaires, peu compatibles avec la
description des propriétés de transport des électrons. Il est plus commode,
mais non indispensable, d’utiliser des conditions de bord périodiques,
c’est-à-dire d’admettre qu’un électron qui atteint la surface sort du cube
mais y revient immédiatement par l’autre face.

A une dimension cela revient à écrire que  (x) =  (x+ L).

0

A trois dimensions, bien que cela soit impossible à réaliser topologique-
ment, on écrit,

 (x, y, z + L) =  (x, y, z)

 (x, y + L, z) =  (x, y, z)

 (x+ L, y, z) =  (x, y, z)

(2.2)

Les conditions (2.2) sont dites conditions de bord périodiques ou de Born-
von Karman.

Il s’agit donc de résoudre (2.1) avec les conditions de bord (2.2). Une
solution de (2.1) est du type

 k (r) =
1

p
V

exp (ik · r) , (2.3)

avec la valeur propre correspondante,

E (k) =
~2k2

2m
, (2.4)
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Figure 2.2 – Points dans un espace à 2 dimensions tels que kx =
2⇡
L nx, ky =

2⇡
L ny.

Le nombre de valeurs de k inclues dans un volume ⌦, de l’espace réci-
proque, que l’on suppose grand par rapport aux dimensions d’une cellule de
volume (2⇡/L)3, est donné par

⌦

(2⇡/L)3
=

⌦V

8⇡3
. (2.11)

En d’autres termes la densité de valeurs de k permises dans l’espace réci-
proque est donnée par V/8⇡3. Dans le cas où V est grand, le réseau de points
dans l’espace réciproque est serré et l’on peut remplacer la somme sur les
valeurs k du réseau par une intégrale

X

k

F (k) ⇠= V

Z
dk

8⇡3
F (k) , soit

lim
V!1

1

V

X

k

F (k) =

Z
dk

8⇡3
F (k) (2.12)

L5. P4

Suppose our solid contains N atoms with each atom contributing q free electrons and our 
solid is in its collective ground state (no thermal excitations).

If the electrons were distinguishable particles or bosons they all would have been in the   
ground  state,

However, electrons are identical fermions and obey Pauli exclusion principal, so only two
of them can occupy any particular  state (two because of the spin, one being "spin up"  
and  another one being "spin down"

We can say that electrons will fill up one octant (i.e. 1/8 part, see picture) of a
sphere in k-space.

The radius        of that sphere  is determined
by the volume  required for each pair of  
electrons  (           ):

We assume that we have N atoms with each
atom contributing q free electrons. Each pair
needs volume         , we so need to divide Nq 
by 2.

We define the free electron density      .

The boundary that separates occupied and unoccupied states in k-space is called the  
Fermi surface.

The corresponding Fermi energy, i.e. the  energy of the highest occupied state, is
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that the total number of electrons in the system is equal to N. At absolute zero FEµ = .  

Three dimensions 
The Schrödinger equation in the three dimensions takes the form 

2 2 2 2 2 2
2

2 2 2( ) ( ) ( ) ( ) ( )
2 2 2
pH E
m m m x y z

ψ ψ ψ ψ ψ
! "∂ ∂ ∂

= = − ∇ = − + + =# $∂ ∂ ∂% &
r r r r r! ! . (7.7) 

If the electrons are confined to a cube of edge L, the solution is the standing wave 

( ) sin sin sinyx z
nn nA x y z

L L L
ππ π

ψ
! "! " ! "= # $ # $# $

% &% & % &
r , (7.8) 

where nx, ny, and  nz are positive integers.  
In many cases, however, it convenient to introduce periodic boundary conditions, as we did for 
lattice vibrations. The advantage of this description is that we assume that our crystal is infinite and 
disregard the influence of the outer boundaries of the crystal on the solution. We require then that 
our wavefunction is periodic in x, y, and z directions with period L, so that 

( , , ) ( , , )x L y z x y zψ ψ+ = , (7.9) 

and similarly for the y and z coordinates. The solution of the Schrödinger equation (7.7) which 
satisfies these boundary conditions has the form of the traveling plane wave: 

( ) exp( )A iψ = ⋅r k r , (7.10) 

provided that the component of the wavevector k are determined from  

22 2; ;yx z
x y z

nn nk k k
L L L

ππ π
= = = , (7.11) 

where nx, ny, and  nz are positive or negative integers.  
If we now substitute this solution to Eq.(7.7) we obtain for the energies of the orbital with the 
wavevector k 

( )
2 2 2

2 2 2

2 2 x y z
kE k k k
m m

= = + +k
! ! . (7.12) 

The wavefunctions (7.10) are the eigenfunctions of the momentum i= − ∇p ! , which can be easily 
seen by differentiating (7.10) : 

( ) ( ) ( )iψ ψ ψ= − ∇ =k k kp r r k r! ! . (7.13) 

The eigenvalue of the momentum is k! . The velocity of the electron is defined by 
/ /m m= =v p k! . 

In the ground state a system of N electrons occupies states with lowest possible energies. Therefore 
all the occupied states lie inside the sphere of radius kF.  The energy at the surface of this sphere is 
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the Fermi energy EF. The magnitude of the wavevector kF and the Fermi energy are related by the 
following equation: 

2 2

2
F

F
kE
m

=
! . (7.14) 

The Fermi energy and the Fermi wavevector (momentum) are determined by the number of valence 
electrons in the system. In order to find the relationship between N and kF, we need to count the 
total number of orbitals in a sphere of radius kF which should be equal to N. There are two available 
spin states for a given set of kx, ky, and  kz. The volume in the k space which is occupies by this state 
is equal to 3(2 / )Lπ . Thus in the sphere of 3(4 / 3)Fkπ  the total number of states is  

3
3

3 2

4 / 32
(2 / ) 3

F
F

k V k N
L

π
π π

= = , (7.15) 

where the factor 2 comes from the spin degeneracy. Then 
1/323

F
Nk

V
π! "

= # $
% &

, (7.16) 

which depends only of the electron concentration. We obtain then for the Fermi energy: 
2/32 23

2F
NE

m V
π! "

= # $
% &

! . (7.17) 

and the Fermi velocity 
1/323vF

N
m V

π! "
= # $

% &

! . (7.18) 

A few estimates for Na: Na has bcc structure with cubic lattice parameter a=4.2Å and one valence 
electron per atom. Since there are 2 atoms in a unit cell, the electron concentration is N/V = 
2/(4.2Å3) = 3!1022cm-3. Then, the Fermi momentum is  22 3 1/3 8 1 1(3 10 3 10 ) 10 1ÅFk cm cm− − −≈ ⋅ ⋅ ⋅ ≈ = . 

The Fermi energy is given by 
2 2 2

2 2
02

0

13.6 0.25 3.5
2 2

F
F F

kE k a eV eV
m ma

= = ≈ ⋅ ≈
! ! . The Fermi 

temperature is defined / 40000F F BT E k K= ≈  (1eV corresponds to 1.16!104K). The Fermi velocity 

can be found from 
2 2

3
0 0 02

0

v 1 0.5 4 10
137

F
F F F

me ek a k a k a
c mca mc c

−= = = ≈ ≈ ⋅
! !

! !
, which results in 

8v 10F
cm
s

≈ . We see that the velocity of electrons is relatively large.  

An important quantity which characterizes electronic properties of a solid is the density of states, 
which is the number of electronic states per unit energy range. To find it we use Eq.(7.17) and 
write the total number of orbitals of energy < E :  
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Figure 2.2 – Points dans un espace à 2 dimensions tels que kx =
2⇡
L nx, ky =

2⇡
L ny.

Le nombre de valeurs de k inclues dans un volume ⌦, de l’espace réci-
proque, que l’on suppose grand par rapport aux dimensions d’une cellule de
volume (2⇡/L)3, est donné par

⌦

(2⇡/L)3
=

⌦V

8⇡3
. (2.11)

En d’autres termes la densité de valeurs de k permises dans l’espace réci-
proque est donnée par V/8⇡3. Dans le cas où V est grand, le réseau de points
dans l’espace réciproque est serré et l’on peut remplacer la somme sur les
valeurs k du réseau par une intégrale

X

k

F (k) ⇠= V

Z
dk

8⇡3
F (k) , soit

lim
V!1

1

V

X

k

F (k) =

Z
dk

8⇡3
F (k) (2.12)

L5. P4

Suppose our solid contains N atoms with each atom contributing q free electrons and our 
solid is in its collective ground state (no thermal excitations).

If the electrons were distinguishable particles or bosons they all would have been in the   
ground  state,

However, electrons are identical fermions and obey Pauli exclusion principal, so only two
of them can occupy any particular  state (two because of the spin, one being "spin up"  
and  another one being "spin down"

We can say that electrons will fill up one octant (i.e. 1/8 part, see picture) of a
sphere in k-space.

The radius        of that sphere  is determined
by the volume  required for each pair of  
electrons  (           ):

We assume that we have N atoms with each
atom contributing q free electrons. Each pair
needs volume         , we so need to divide Nq 
by 2.

We define the free electron density      .

The boundary that separates occupied and unoccupied states in k-space is called the  
Fermi surface.

The corresponding Fermi energy, i.e. the  energy of the highest occupied state, is
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which depends only of the electron concentration. We obtain then for the Fermi energy: 
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A few estimates for Na: Na has bcc structure with cubic lattice parameter a=4.2Å and one valence 
electron per atom. Since there are 2 atoms in a unit cell, the electron concentration is N/V = 
2/(4.2Å3) = 3!1022cm-3. Then, the Fermi momentum is  22 3 1/3 8 1 1(3 10 3 10 ) 10 1ÅFk cm cm− − −≈ ⋅ ⋅ ⋅ ≈ = . 
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≈ . We see that the velocity of electrons is relatively large.  

An important quantity which characterizes electronic properties of a solid is the density of states, 
which is the number of electronic states per unit energy range. To find it we use Eq.(7.17) and 
write the total number of orbitals of energy < E :  
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2⇡
L nx, ky =

2⇡
L ny.

Le nombre de valeurs de k inclues dans un volume ⌦, de l’espace réci-
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Suppose our solid contains N atoms with each atom contributing q free electrons and our 
solid is in its collective ground state (no thermal excitations).

If the electrons were distinguishable particles or bosons they all would have been in the   
ground  state,

However, electrons are identical fermions and obey Pauli exclusion principal, so only two
of them can occupy any particular  state (two because of the spin, one being "spin up"  
and  another one being "spin down"

We can say that electrons will fill up one octant (i.e. 1/8 part, see picture) of a
sphere in k-space.

The radius        of that sphere  is determined
by the volume  required for each pair of  
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We assume that we have N atoms with each
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where the factor 2 comes from the spin degeneracy. Then 
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which depends only of the electron concentration. We obtain then for the Fermi energy: 
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and the Fermi velocity 
1/323vF

N
m V

π! "
= # $

% &

! . (7.18) 

A few estimates for Na: Na has bcc structure with cubic lattice parameter a=4.2Å and one valence 
electron per atom. Since there are 2 atoms in a unit cell, the electron concentration is N/V = 
2/(4.2Å3) = 3!1022cm-3. Then, the Fermi momentum is  22 3 1/3 8 1 1(3 10 3 10 ) 10 1ÅFk cm cm− − −≈ ⋅ ⋅ ⋅ ≈ = . 

The Fermi energy is given by 
2 2 2

2 2
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temperature is defined / 40000F F BT E k K= ≈  (1eV corresponds to 1.16!104K). The Fermi velocity 

can be found from 
2 2
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me ek a k a k a
c mca mc c

−= = = ≈ ≈ ⋅
! !

! !
, which results in 

8v 10F
cm
s

≈ . We see that the velocity of electrons is relatively large.  

An important quantity which characterizes electronic properties of a solid is the density of states, 
which is the number of electronic states per unit energy range. To find it we use Eq.(7.17) and 
write the total number of orbitals of energy < E :  
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Fermi temperature
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Fermi temperature8 CHAPITRE 2. LE GAZ D’ÉLECTRONS LIBRES DE FERMI

Element rs/a0 EF TF kF vf

Li

Na

K

Rb

Cs

Cu

Ag

Au

Be

Mg

Ca

Sr

Ba

Nb

Fe

Mn

Zn

Cd

Hg

Al

Ga

In

Tl

Sn

Pb

Bi

Sb

3.25

3.93

4.86

5.20

5.62

2.67

3.02

3.01

1.87

2.66

3.27

3.57

3.71

3.07

2.12

2.14

2.30

2.59

2.65

2.07

2.19

2.41

2.48

2.22

2.30

2.25

2.14

4.74eV

3.24

2.12

1.85

1.59

7.00

5.49

5.53

14.3

7.08

4.69

3.93

3.64

5.32

11.1

10.9

9.47

7.47

7.13

11.7

10.4

8.63

8.15

10.2

9.47

9.90

10.9

5.51⇥10
4
K

3.77

2.46

2.15

1.84

8.16

6.36

6.42

16.6

8.23

5.44

4.57

4.23

6.18

13.0

12.7

11.0

8.68

8.29

13.6

12.1

10.0

9.46

11.8

11.0

11.5

12.7

1.12⇥10
8
cm

-1

0.92

0.75

0.70

0.65

1.36

1.20

1.21

1.94

1.36

1.11

1.02

0.98

1.18

1.71

1.70

1.58

1.40

1.37

1.75

1.66

1.51

1.46

1.64

1.58

1.61

1.70

1.29⇥10
8
cm/sec

1.07

0.86

0.81

0.75

1.57

1.39

1.40

2.25

1.58

1.28

1.18

1.13

1.37

1.98

1.96

1.83

1.62

1.58

2.03

1.92

1.74

1.69

1.90

1.83

1.87

1.96

The table entries are calculated from the values of rs/a0 given in Table 1.1 using

m =9.1·10
-31

kg.

Table 2.1 – Energies, températures, vecteurs d’onde, et vitesses de Fermi de

plusieurs métaux, calculés à partir de la densité d’électrons de conduction dans le

modèle d’électrons libres.

L5. P4

Suppose our solid contains N atoms with each atom contributing q free electrons and our 
solid is in its collective ground state (no thermal excitations).

If the electrons were distinguishable particles or bosons they all would have been in the   
ground  state,

However, electrons are identical fermions and obey Pauli exclusion principal, so only two
of them can occupy any particular  state (two because of the spin, one being "spin up"  
and  another one being "spin down"

We can say that electrons will fill up one octant (i.e. 1/8 part, see picture) of a
sphere in k-space.

The radius        of that sphere  is determined
by the volume  required for each pair of  
electrons  (           ):

We assume that we have N atoms with each
atom contributing q free electrons. Each pair
needs volume         , we so need to divide Nq 
by 2.

We define the free electron density      .

The boundary that separates occupied and unoccupied states in k-space is called the  
Fermi surface.

The corresponding Fermi energy, i.e. the  energy of the highest occupied state, is

   Lecture 5 Page 4    

Application: Na (bcc) with a = 0.42 nm and one valence electron per atom - det. kF, EF,
TF, vF ?
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Fermi-Dirac distribution : how to fill the quantum states with electrons ?
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usually described by the distribution function, f(E), which is defined as the probability that the level 
E is occupied by an electron. Thus if the level is certainly empty, then, f(E) = 0, while if it is 
certainly full, then f(E)  = 1. In general, f(E)  has a value between zero and unity.   

 
 

Fig. 2   (a) Occupation of energy levels according to the Pauli exclusion 
principle, (b) The distribution function f(E), at T = 0°K and T> 0°K. 

 
It follows from the preceding discussion that the distribution function for electrons at T = 0°K has 
the form 

,1
( )

,0
F

F

E E
f E

E E
<!

= "
>#

. (7.5) 

That is, all levels below EF are completely filled, and all those above EF are completely empty. This 
function is plotted in Fig. 2(b), which shows the discontinuity at the Fermi energy. 
When the system is heated (T>0°K), thermal energy excites the electrons. However, all the electrons do 
not share this energy equally, as would be the case in the classical treatment, because the electrons 
lying well below the Fermi level EF cannot absorb energy. If they did so, they would move to a higher 
level, which would be already occupied, and hence the exclusion principle would be violated. 
Recall in this context that the energy which an electron may absorb thermally is of the order kBT ( = 
0.025 eV at room temperature), which is much smaller than EF, this being of the order of 5 eV. 
Therefore only those electrons close to the Fermi level can be excited, because the levels above EF are 
empty, and hence when those electrons move to a higher level there is no violation of the exclusion 
principle. Thus only these electrons - which are a small fraction of the total number - are capable of 
being thermally excited. 
The distribution function at non-zero temperature is given by the Fermi distribution function. The 
derivation is presented in the appendix D of the textbook. The Fermi distribution function determines 
the probability that an orbital of energy E is occupied at thermal equilibrium  

( ) /
1( )

e 1BE k Tf E µ−=
+

. (7.6) 

This function is also plotted in Fig. 2(b), which shows that it is substantially the same as the 
distribution at T = 0°K, except very close to the Fermi level, where some of the electrons are excited 
from below EF  to above it.  

The quantity µ is called the chemical potential. The chemical potential can be determined in a way 
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T = 0 K

T ≠ 0 K
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f(E) = probability that the level E is occupied by
electrons

f(E) = 1 -> level completely filled (2 electrons)
f(E) = 0 -> level empty



Density of states (DOS)

An important quantity which characterizes electronic properties of a solid is the density 
of states (DOS), which is the number of electronic states per unit energy range. 

Let 𝜙(𝐸) be the total number of electronic states of energy < E within a 3D-conductor:

Free electron gas model

Then density of states 𝑔(𝐸) is defined as: 𝑔 𝐸 =
𝑑𝜙
𝑑𝐸

𝜙(𝐸) =
𝑉
3𝜋!

2𝑚𝐸
ℏ!

"# !

𝑔 𝐸 =
𝑑𝜙
𝑑𝐸 =

𝑉
2𝜋!

2𝑚
ℏ!

"# !
𝐸 "$ !



Density of states (DOS)

Density of states in a 3D-conductor:

Free electron gas model

Normalization:
T = 0 K

T ≠ 0 K

𝑔 𝐸 =
𝑑𝜙
𝑑𝐸 =

𝑉
2𝜋!

2𝑚
ℏ!

"# !
𝐸 "$ !

𝑁 = (
!

"!

𝑔 𝐸 𝑑𝐸

𝑁 = (
!

#$

𝑔 𝐸 𝑓(𝐸, 𝑇)𝑑𝐸

Where f(E, T) is the Fermi distribution function.
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Heat capacity 
The question that caused the greatest difficulty in the early development of the electron theory 
of metals concerns the heat capacity of the conduction electrons. Classical statistical mechanics 
predicts that a free particle should have a heat capacity of 3/2kB, where kB is the Boltzmann 
constant. If N atoms each give one valence electron to the electron gas, and the electrons are 
freely mobile, then the electronic contribution to the heat capacity should be 3/2NkB, just as for 
the atoms of a monatomic gas. But the observed electronic contribution at room temperature is 
usually less than 0.01 of this value. 
This discrepancy was resolved only upon the discovery of the Pauli exclusion principle and the 
Fermi distribution function. When we heat the specimen from absolute zero not every electron 
gains an energy ~kBT as expected classically, but only those electrons, which have the energy 
within an energy range kBT of the Fermi level, can be excited thermally. These electrons gain 
an energy, which is itself of the order of kBT, as in Fig. 3. This gives a qualitative solution to the 
problem of the heat capacity of the conduction electron gas. If N is the total number of electrons, 
only a fraction of the order of kBT/EF can be excited thermally at temperature T, because only 
these lie within an energy range of the order of kBT of the top of the energy distribution. 
Each of these NkBT/EF electrons has a thermal energy of the order of kBT. The total electronic 
thermal kinetic energy U is of the order of U≈(NkBT/EF)kBT. The electronic heat capacity is 
Cel=dU/dT≈NkB(kBT/EF) and is directly proportional to T, in agreement with the experimental 
results discussed in the following section. At room temperature C is smaller than the classical value 
≈ NkB by a factor 0.01 or less.  
We now derive a quantitative expression for the electronic heat capacity valid at low temperatures 
kBT << EF. The total energy of a system of N electrons at temperature T is 

0

( ) ( , )U ED E f E T dE
∞

= ! , (7.24) 

where f(E,T) is the Fermi distribution function and D(E) is the density of states. The heat 
capacity can be found by differentiating this equation with respect to temperature. Since only 
the distribution function depends on temperature we obtain: 

0

( , )( )el
dU df E TC ED E dE
dT dT

∞

= = ! . (7.25) 

It is more convenient to represent this result in a different form:  

0

( , )( ) ( )el F
df E TC E E D E dE

dT

∞

= −! . (7.26) 

Eq. (7.27) is equivalent to Eq. (7.25) due to the fact which follows from Eq. (7.22): 

0

( , )0 ( )F F
dN df E TE E D E dE
dT dT

∞

= = ! . (7.27) 

Since only the distribution function depends on Temperature:

Using:

we obtain:

𝑈 = (
!

#$
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!

#$

𝐸𝑔 𝐸
𝑑𝑓(𝐸, 𝑇)
𝑑𝑇 𝑑𝐸
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!
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df/dT is large only at energies which lie close to the Fermi energy:

So that: 𝐶%& = 𝑔(𝐸')∫(
)*(𝐸 − 𝐸')

+,(.,0)
+0

𝑑𝐸



Heat capacity of solids – electronic contribution

We also ignore the variation of the chemical potential with temperature and assume 
that              which is a good approximation at room temperature and below. 

Additionally, it can be shown that:                           

Free electron gas model
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Since we are interested only temperatures for which kBT << EF the derivative df/dT is large only at 
the energies which lie very close to the Fermi energy. Therefore, we can ignore the variation of 
D(E) under the integral and take it outside the integrand at the Fermi energy, so that 

0

( , )( ) ( )el F F
df E TC D E E E dE

dT

∞

= −! . (7.28) 

We also ignore the variation of the chemical potential with temperature and assume that FEµ = , 
which is good approximation at room temperature and below. Then 

( )

( )

/

22 /

( , ) e

e 1

F B

F B

E E k T
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E E k T
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Eq.(7.28) can, then, be rewritten as   
( )

( )

( )
( )

32/2

2 22 2/
0 /
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e 1e 1

F B

F B
F B
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" # ++$ %
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Taking into account that EF>>kBT, we can put the low integration limit to minus infinity and 
obtain  

( )

2 2
2 2

2
e( ) ( )

3e 1

x

el F B F Bx

xC D E k T dx D E k Tπ∞

−∞

= =
+

! . (7.31) 

For a free electron gas we should use Eq.(7.21) for the density of states to finally obtain 
2

2el B
F

TC Nk
T

π
= , (7.32) 

where we defined the Fermi temperature /F F BT E k= . This is similar to what we expected to obtain 
according to the qualitative arguments given in the beginning of this section.  
Experimentally the heat capacity at temperatures much below both the Debye temperature and the 
Fermi temperature can be represented in the form: 

3
el phC C C T Tα β= + = + . (7.33) 

The electronic term is dominant at sufficiently low temperatures. The constants α and β can be 
obtained by fitting the experimental data.  
 

2.2. LA DISTRIBUTION DE FERMI-DIRAC. 13

lim
T!0

f (Ek,s) = 1 si E < µ

= 0 si E > µ.

Il est donc nécessaire que

lim
T!0

µ = EF . (2.34)

Dans les métaux, pour des températures inférieures à quelques centaines de
K, le potentiel chimique reste égal à EF avec une bonne précision (voir §

2.2.3). Nous donnons dans la Fig. 2.4 la distribution de Fermi-Dirac à diverses
températures. Il faut remarquer que f(E) = 1/2 lorsque E = µ. Dans la
Fig. 2.4 la variation de µ(T ) est celle d’un gaz d’électrons libres en trois
dimensions.
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Figure 2.4 – Distribution de Fermi-Dirac où la variation µ (T ) est celle du cas

3D.

La largeur de la zone de transition entre la valeur 1 et 0 de f(E) est
de l’ordre de grandeur de quelques kBT . C’est une remarque que nous ex-
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Cette expression est générale et peut s’appliquer à des cas où la densité d’états
est quelconque. Dans le cas du gaz d’électrons libres en trois dimensions g(E)
est donné par (2.23) et en remplaçant,

µ = EF

"
1�

⇡2

12

✓
kBT

EF

◆2
#
. (2.51)

En notant que kBT/EF = T/TF, où TF ⇡ 5⇥104 K, on obtient que la variation
de µ par rapport à EF est de l’ordre de 0.01 % à température ambiante . On
pourra donc dans la plupart des cas négliger la variation de µ en fonction de
la température.

Notons que le fait que µ di↵ère de EF par des termes faibles en T 2 permet
de récrire l’expression (2.45) de façon simplifiée, mais correcte à l’ordre T 2,
soit

1Z
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h (E) f (E) dE =

EFZ

0

h (E) dE + (µ� EF )h (EF ) +
⇡2

6
(kBT )

2 @h

@E

����
E=EF

.

(2.52)

2.3 La chaleur spécifique électronique

2.3.1 Calcul de la chaleur spécifique

La chaleur spécifique électronique par unité de volume cv est définie par

cv =
@u

@T

����
n

, (2.53)

où u = u(T ) est la densité d’énergie du gaz électronique. u(T ) est donné par
(2.36) soit,

u (T ) = u =

1Z

0

dE g (E) E f (E) . (2.54)

Cette expression peut être récrite en tenant compte de (2.52) avec h(E) =
E g(E),

Important to note that 
f(E) = 1/2 when E = µ
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usually described by the distribution function, f(E), which is defined as the probability that the level 
E is occupied by an electron. Thus if the level is certainly empty, then, f(E) = 0, while if it is 
certainly full, then f(E)  = 1. In general, f(E)  has a value between zero and unity.   

 
 

Fig. 2   (a) Occupation of energy levels according to the Pauli exclusion 
principle, (b) The distribution function f(E), at T = 0°K and T> 0°K. 

 
It follows from the preceding discussion that the distribution function for electrons at T = 0°K has 
the form 
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That is, all levels below EF are completely filled, and all those above EF are completely empty. This 
function is plotted in Fig. 2(b), which shows the discontinuity at the Fermi energy. 
When the system is heated (T>0°K), thermal energy excites the electrons. However, all the electrons do 
not share this energy equally, as would be the case in the classical treatment, because the electrons 
lying well below the Fermi level EF cannot absorb energy. If they did so, they would move to a higher 
level, which would be already occupied, and hence the exclusion principle would be violated. 
Recall in this context that the energy which an electron may absorb thermally is of the order kBT ( = 
0.025 eV at room temperature), which is much smaller than EF, this being of the order of 5 eV. 
Therefore only those electrons close to the Fermi level can be excited, because the levels above EF are 
empty, and hence when those electrons move to a higher level there is no violation of the exclusion 
principle. Thus only these electrons - which are a small fraction of the total number - are capable of 
being thermally excited. 
The distribution function at non-zero temperature is given by the Fermi distribution function. The 
derivation is presented in the appendix D of the textbook. The Fermi distribution function determines 
the probability that an orbital of energy E is occupied at thermal equilibrium  

( ) /
1( )

e 1BE k Tf E µ−=
+

. (7.6) 

This function is also plotted in Fig. 2(b), which shows that it is substantially the same as the 
distribution at T = 0°K, except very close to the Fermi level, where some of the electrons are excited 
from below EF  to above it.  

The quantity µ is called the chemical potential. The chemical potential can be determined in a way 
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We also ignore the variation of the chemical potential with temperature and assume 
that              which is a good approximation at room temperature and below. 

And at room temperature µ deviates from EF by less than 0.01 %
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Since we are interested only temperatures for which kBT << EF the derivative df/dT is large only at 
the energies which lie very close to the Fermi energy. Therefore, we can ignore the variation of 
D(E) under the integral and take it outside the integrand at the Fermi energy, so that 
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We also ignore the variation of the chemical potential with temperature and assume that FEµ = , 
which is good approximation at room temperature and below. Then 

( )

( )

/

22 /

( , ) e

e 1

F B

F B

E E k T
F

E E k T
B

E Edf E T
dT k T

−

−

−
=

" #+$ %

. (7.29) 
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Taking into account that EF>>kBT, we can put the low integration limit to minus infinity and 
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For a free electron gas we should use Eq.(7.21) for the density of states to finally obtain 
2

2el B
F

TC Nk
T

π
= , (7.32) 

where we defined the Fermi temperature /F F BT E k= . This is similar to what we expected to obtain 
according to the qualitative arguments given in the beginning of this section.  
Experimentally the heat capacity at temperatures much below both the Debye temperature and the 
Fermi temperature can be represented in the form: 

3
el phC C C T Tα β= + = + . (7.33) 

The electronic term is dominant at sufficiently low temperatures. The constants α and β can be 
obtained by fitting the experimental data.  
 

2.2. LA DISTRIBUTION DE FERMI-DIRAC. 13

lim
T!0

f (Ek,s) = 1 si E < µ

= 0 si E > µ.

Il est donc nécessaire que

lim
T!0

µ = EF . (2.34)

Dans les métaux, pour des températures inférieures à quelques centaines de
K, le potentiel chimique reste égal à EF avec une bonne précision (voir §

2.2.3). Nous donnons dans la Fig. 2.4 la distribution de Fermi-Dirac à diverses
températures. Il faut remarquer que f(E) = 1/2 lorsque E = µ. Dans la
Fig. 2.4 la variation de µ(T ) est celle d’un gaz d’électrons libres en trois
dimensions.
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[1 + exp (x)]2
=
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@E
(�x) . (2.42)

Si H(E) ne varie pas trop rapidement au voisinage de E = µ, on peut déve-
lopper en série H(E) et ne garder que les premiers termes du développement.
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En remplaçant (2.43) dans (2.40), on remarque que les termes impaires en
(E � µ) du développement s’annulent car @f

@E est symétrique, il reste donc
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le facteur de H(µ) est égal à �1 et l’intégrale apparaissant dans le second
terme est égale à
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et en remplaçant H(E) par sa valeur en fonction de h(E),
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Experimentally the heat capacity at low temperatures below can be represented as a
sum of electronic and phononic contributions:
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For a free electron gas we should use Eq.(7.21) for the density of states to finally obtain 
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where we defined the Fermi temperature /F F BT E k= . This is similar to what we expected to obtain 
according to the qualitative arguments given in the beginning of this section.  
Experimentally the heat capacity at temperatures much below both the Debye temperature and the 
Fermi temperature can be represented in the form: 

3
el phC C C T Tα β= + = + . (7.33) 

The electronic term is dominant at sufficiently low temperatures. The constants α and β can be 
obtained by fitting the experimental data.  
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dominée par les contributions liées au mouvement des ions du métal (voir
Chap. 3 et 4). Elle varie en T 3 à basse température et devient ainsi plus
faible que la contribution électronique pour des températures de l’ordre de 1
K. A basse température,

cv = �T + AT 3. (2.58)

Il est commode de représenter cv/T en fonction de T 2, car les points expéri-
mentaux devraient s’aligner sur une droite. A titre d’exemple nous donnons
dans la Fig. 2.7 les résultats obtenus pour l’or.
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Figure 2.7 – Chaleur spécifique de Au reportée dans un diagramme C/T en

fonction de T 2
.

En général les chaleurs spécifiques sont données en joule par mole et par
degré. Exprimée dans ces unités la partie de la chaleur spécifique C due aux
électrons est donnée par,

C =
⇡2

3
ZR

kBT

n
g (EF ) .

Où Z est le nombre d’électrons de valence par atome et R = kBNA =
8, 314 J/mole. On en tire � pour le gaz d’électrons libres :

Heat capacity of Gold (Au)


