Electronic structure of Solids I

A free electron model is the simplest way to represent the electronic structure of solids such as metals.

Although the free electron model is a great oversimplification of the reality, is able to describe many important properties of conductors.

Fermi Gas :

- Valence electrons are considered to travel freely throughout the crystal, neglecting the interaction of electrons with ions of the lattice and the interaction between electrons
- Pauli principle is taken into account.

Enrico Fermi (1901 – 1954)

ID-conductor = "particle in a *ID-box*"

H (x) E (x)

We assume that an electron of mass m is confined to a length L by infinite potential barriers.

$$H\psi_{n}(x) = \frac{p^{2}}{2m}\psi_{n}(x) = -\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{n}(x) = E_{n}\psi_{n}(x).$$

$H \begin{array}{c} H \\ (x) \end{array} \begin{array}{c} (x) \\ E \end{array} \begin{array}{c} E \\ (x) \end{array} (x)$

8

$$\begin{array}{c} ID\text{-conductor} = ``particle in a ID\text{-box''} & \hbar & H & (x) & E & (x) \\ H & (x) & (x)\hbar & (x)E & (x) \\ We assume H at any electron of final s m is confident to easily not the final to by infinite potential barriers. 2m & 2m dx \end{array}$$

$$H\psi_{n}(x) = \frac{p^{2}}{2m}\psi_{n}(x) = -\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi_{n}(x) = E_{n}\psi_{n}(x).$$
(x)

SOLUTIONS :

Fermi energy (for a system of N electrons)

(x)

One need to accomodate N electrons in the various quantum states of the particle in a box.

The highest occupied state = Fermi level

Periodic boundary conditions = we assume that the crystal is infinite in x, y and z

$$(\mathbf{r}) = \exp(\mathbf{k} \cdot \mathbf{r})$$

$$\psi(x + L_{0}^{+}y, z) = \psi(x, y, z)$$

The solution of the Schrödinger equation which satisfies these boundary conditions, called Born $_{I}$ von Karman periodic conditions, has the form of a traveling plane wave:

$$\psi_{\mathbf{\kappa}}(\mathbf{r}) = A \exp(i\mathbf{k} \cdot \mathbf{r})$$

$$(\mathbf{r}) = \exp(\mathbf{k} \cdot \mathbf{r})$$

With a quantized wave vector **k**:

$$k_{x} = \frac{2\pi n_{x}}{L}; \quad k_{y} = \frac{2\pi n_{y}}{L}; \quad k_{z} = \frac{2\pi n_{z}}{L}$$
$$\pi n_{z}$$

Quantization of electronic energy

$$E_{\mathbf{k}} = \frac{\hbar^2 k^2}{2mL} = \frac{\hbar^2}{2m} \left(k_x^2 + k_y^2 + k_z^2 \right)$$

 $\mathbf{p} = -i\hbar\nabla$

ħ ħ . . .

and another one being "spin down"

3D-conductor = particle in periodic bo
$$(\mathbf{r}) = \exp(\mathbf{k} \cdot \mathbf{r})$$

Fermi wave-vector

In the ground state, a system of N electrons occupies states with lowest possible energies.

Therefore all the occupied states lies inside the sphere of radius k_F (Fermi sphere)

$$E_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m} \left(k_x^2 + k_y^2 + k_z^2 \right)$$

Fermi temperature

and another one being "spin down"

Element	r_s/a_0	E_F	T_F	k_F	v_f
Li	3.25	$4.74\mathrm{eV}$	$5.51 \times 10^4 \mathrm{K}$	$1.12 \times 10^8 \text{cm}^{-1}$	$1.29 \times 10^8 \mathrm{cm/sec}$
Na	3.93	3.24	3.77	0.92	1.07
Κ	4.86	2.12	2.46	0.75	0.86
Rb	5.20	1.85	2.15	0.70	0.81
\mathbf{Cs}	5.62	1.59	1.84	0.65	0.75
Cu	2.67	7.00	8.16	1.36	1.57
Ag	3.02	5.49	6.36	1.20	1.39
Au	3.01	5.53	6.42	1.21	1.40
Be	1.87	14.3	16.6	1.94	2.25
Mg	2.66	7.08	8.23	1.36	1.58
Ca	3.27	4.69	5.44	1.11	1.28
Sr	3.57	3.93	4.57	1.02	1.18
Ba	3.71	3.64	4.23	0.98	1.13
Nb	3.07	5.32	6.18	1.18	1.37
Fe	2.12	11.1	13.0	1.71	1.98
Mn	2.14	10.9	12.7	1.70	1.96
Zn	2.30	9.47	11.0	1.58	1.83
Cd	2.59	7.47	8.68	1.40	1.62
Hg	2.65	7.13	8.29	1.37	1.58
Al	2.07	11.7	13.6	1.75	2.03

<u>Application</u>: Na (bcc) with a = 0.42 nm and one valence electron per atom - det. k_F , E_F , T_F , v_F ?

Fermi-Dirac distribution : how to fill the quantum states with electrons ?

f(E) = probability that the level E is occupied by electrons

$$f(E) = 1 \rightarrow$$
 level completely filled (2 electrons)
 $f(E) = 0 \rightarrow$ level empty

 E_F

 E_F

An important quantity which characterizes electronic properties of a solid is the density of states (DOS), which is the number of electronic states per unit energy range.

Let $\phi(E)$ be the total number of electronic states of energy < E within a 3D-conductor:

$$\phi(E) = \frac{V}{3\pi^2} \left(\frac{2mE}{\hbar^2}\right)^{3/2}$$

Then density of states g(E) is defined as:

$$g(E) = \frac{d\phi}{dE}$$

$$g(E) = \frac{d\phi}{dE} = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{1/2}$$

Density of states (DOS)

Density of states in a 3D-conductor:

$$g(E) = \frac{d\phi}{dE} = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{1/2}$$

Normalization:

$$N = \int_{0}^{E_{F}} g(E)dE \qquad T = 0 \text{ K}$$
$$N = \int_{0}^{+\infty} g(E)f(E,T)dE \qquad T \neq 0 \text{ K}$$

Where f(E, T) is the Fermi distribution function.

Heat capacity of solids – electronic contribution

At low temperature $k_BT \ll E_F$

$$U \qquad ED(E)f(E,T) \stackrel{+\infty}{\not U} = \int_{0}^{+\infty} Eg(E)f(E,T)dE$$

Since only the distribution function depends on Temperature:

$$C \qquad \qquad E for E^{\pm} \frac{dU}{dT} \Rightarrow \int_{0}^{+\infty} dE g(E) \frac{df(E,T)}{dT} dE$$

Using:
$$0 = E_F \frac{dN}{dT} = E_F \int_0^{\cdot} \frac{g(E)}{E} \frac{df(E,T)}{dD} \frac{dE}{E} dE (,) dE$$

we obtain:
$$C_{el} = \int_0^{+\infty} (E - E_F)g(E) \frac{df(E,T)}{dT} dE$$
$$E = E = D = E = D = \int_0^{0} (,) dE$$

At low temperature $k_BT \ll E_F$

df/dT is large only at energies which lie close to the Fermi energy: $U \quad ED(E)f(E,T)dE$

So that:
$$C_{el} = g(E_F) \int_{0}^{+\infty} (E - E_F) \frac{df(E,T)}{dT} dE$$

We also ignore the variation of the chemical potential with temperature and assume that $\mu = E_F$ which is a good approximation at room temperature and below.

Additionally, it can be shown that: $\mu = E_F \left[1 - \frac{\pi^2}{12} \left(\frac{k_B T}{E_F} \right)^2 \right]$

We also ignore the variation of the chemical potential with temperature and assume that $\mu = E_F$ which is a good approximation at room temperature and below.

And at room temperature μ deviates from E_F by less than 0.01 %

Experimentally the heat capacity at low temperatures below can be represented as a sum of electronic and phononic contributions: $C = C + C = cT + \beta T^{3}$

$$C = C_{el} + C_{ph} = \alpha T + \beta T$$

Т

Experimentally the heat capacity at low temperatures below can be represented as a sum of electronic and phononic contributions:

$$C = C_{el} + C_{ph} = \alpha T + \beta T^3$$

