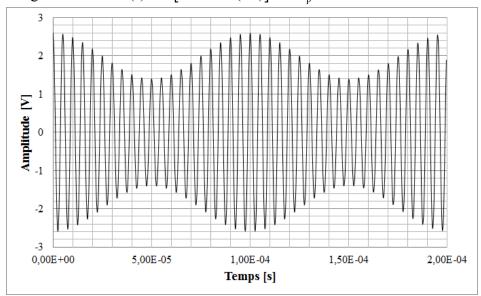


Test d'Electronique – Module complémentaire 2ème Année (S4)


Documents autorisés (Cours/TDs et TPs uniquement)

Durée : 2h – 02 avril 2014

I- Modulation d'amplitude (4 points : 1,5/1/1,5)

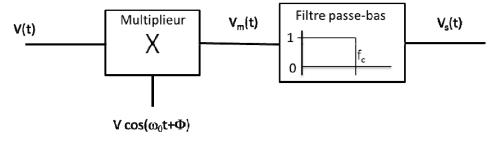

La figure 1 montre un **signal modulé en amplitude**. La fréquence de la porteuse est égale à 200 kHz. Ce signal s'écrit : $V(t) = A[1 + m.\cos(\Omega t)]\cos\omega_p t$

Figure 1 : Signal modulé en amplitude

1/ Déterminer :

- la fréquence du signal modulant
- le taux de modulation
- l'amplitude A
- 2/ Représenter le spectre du signal modulé en le cotant en amplitude et en fréquence.
- 3/ On réalise une démodulation de ce signal à l'aide du circuit donné en figure 2.

Figure 2 : Synoptique pour la démodulation d'amplitude

- a- On fixe $\omega_0 = \omega_p$. Dans ces conditions, exprimer $V_m(t)$. On notera k la constante du multiplieur.
- b- Donner son spectre (position et amplitude des raies).
- c- Indiquer les conditions que doit vérifier la fréquence de coupure du filtre (f_c) pour que la tension $V_s(t)$ corresponde au signal démodulé.

II- Etude d'un démodulateur de fréquence (8 points : 1/1/0,5/0,5/3/2)

On considère le circuit de la figure 3 construit autour d'un filtre F, d'un multiplieur et d'un filtre passe bas. **On se place en régime sinusoïdal** et l'AOP est supposé idéal.

1/ Montrer que le gain complexe $H(j\omega)$ du filtre F peut se mettre sous la forme suivante :

$$\underline{\mathbf{H}}(\mathbf{j}\omega) = \frac{1 - \mathbf{j}\frac{\omega}{\omega_0}}{1 + \mathbf{j}\frac{\omega}{\omega_0}} \text{ avec } \omega_0 = \frac{1}{\mathbf{R}_0 \mathbf{C}_0}$$

2/ Tracer le diagramme de Bode de ce filtre (module et phase).

 $3/ \operatorname{Si} v(t) = V_{m} \cos(\omega t)$, donner l'expression de u(t).

4/ Montrer que ce filtre est un déphaseur pur dont le déphasage s'écrit : $\varphi = -2 \arctan(\frac{\omega}{\omega_0})$.

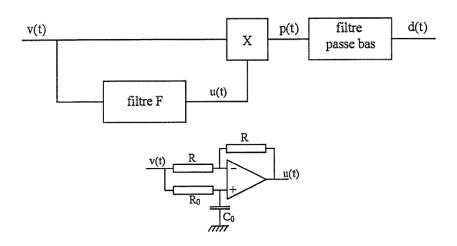


Schéma du filtre F

Figure 3 : Synoptique du démodulateur de fréquence

5/ En supposant que le multiplieur a une constante k, exprimer la tension p(t) en sortie du multiplieur lorsque $v(t) = V_m cos(\omega t)$.

- a- Tracer le spectre de ce signal
- b- On suppose que la fréquence de coupure du filtre passe-bas (f_c) est très petite par rapport à la fréquence f. Exprimer d(t).

c- Sachant que
$$cos(\phi) = \frac{2}{1 + tan^2(\frac{\phi}{2})} - 1$$
, montrer que : $d(t) = \frac{k}{2} \cdot V_m^2 \left[\frac{f_0^2 - f^2}{f_0^2 + f^2} \right]$

6/ On suppose que v(t) est maintenant un signal **modulé en fréquence par un signal S(t)**, la fréquence de la porteuse étant égale à f_0 .

On note f_i la fréquence instantanée du signal modulé et $\delta f = (f_i - f_0)$, la variation instantanée de fréquence. On supposera que : $\delta f \ll f_0$.

On rappelle que la fréquence instantanée s'écrit dans le cas d'une modulation de fréquence sous la forme : $f_i(t) = f_0 + aS(t)$

- a- Exprimer δf en fonction du signal modulant.
- b- Montrer que d(t) peut s'écrire : $d(t) \approx K.\delta f$ autour de f_0 . Exprimer K en fonction de k, V_m , f_0 .
- c- Quelle fonction est réalisée par le circuit ?
- d- Calculer K si $k = 0.5V^{-1}$, $V_m = 2.5 V$, $f_0 = 10 MHz$.

III- Paramètres S d'un quadripôle (4 points : 1/1/2)

On considère le quadripôle Q en figure 4.

1/ Donner les schémas électriques permettant la mesure de S₁₁ et S₂₁.

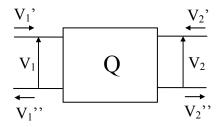


Figure 4 : Quadripôle et notations des tensions

2/ Le quadripôle Q possède la structure de la figure 5. Calculer le paramètre S₁₁.

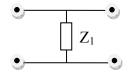


Figure 5 : Quadripôle étudié

3/ On suppose que l'impédance \underline{Z}_1 est constituée d'une inductance L en parallèle avec une capacité C.

- a- Calculer S_{11} pour $\omega \rightarrow 0$ et $\omega \rightarrow \infty$
- b- Calculer S_{11} à la fréquence particulière $\frac{1}{2\pi\sqrt{LC}}$

IV- Adaptation d'impédance par composants discrets et par tronçon de ligne (6 points: 1/2/2/1)

IV-1/ Adaptation par composants discrets

On considère le montage indiqué en figure 6. On cherche à réaliser une adaptation de ce montage autour de 1 GHz.

- 1/ Pourquoi est-il nécessaire d'intercaler un circuit d'adaptation entre le générateur et la charge ? Justifier clairement votre réponse.
- 2/ Calculer le(s) élément(s) du circuit d'adaptation.

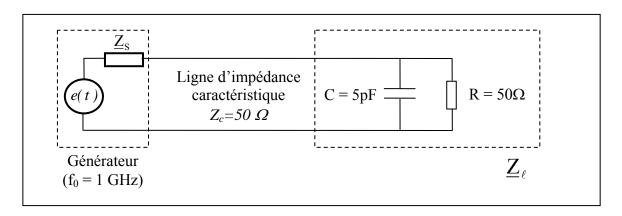


Figure 6 : Caractéristiques du circuit à adapter

IV-2/ Adaptation par tronçon de ligne

La source de la figure 7, de résistance $R_S = Z_c = 50 \, \Omega$, doit transmettre, par l'intermédiaire d'une ligne de transmission d'impédance caractéristique Z_c , le maximum de puissance à l'impédance Z_ℓ supposée réelle. Pour ce faire, on utilise une ligne de longueur $\lambda/4$ d'impédance caractéristique Z_R dont on cherche la valeur.

1/ Donner l'expression de l'impédance ramenée Z_A dans le plan A.

2/ Montrer que Z_R doit satisfaire la relation $Z_R = \sqrt{Z_C Z_\ell}$ pour que la source transmette le maximum de puissance à la charge Z_ℓ .

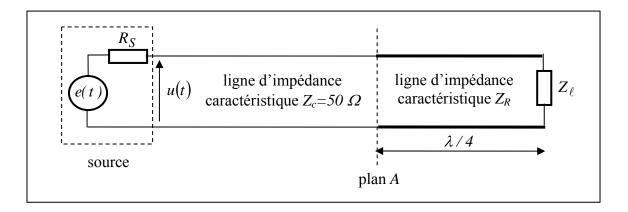


Figure 7 : Adaptation d'impédance par tronçon de ligne

 $\underline{\it NB}$: On rappelle que l'impédance ramenée $\underline{\it Z}(x=L)$ d'un tronçon de ligne de longueur $\it L$ se met sous la forme :

$$Z(x = L) = Z_0 \frac{Z_{\ell} + jZ_0 tg(\beta L)}{Z_0 + jZ_{\ell} tg(\beta L)}$$

avec Z_0 : impédance caractéristique du milieu de propagation et $\beta=2\pi/\lambda$ (constante de phase en m^{-1})

V- RFID (4 points : 1/1,5/1,5)

On souhaite réaliser un dispositif RFID à 27MHz dont la bobine du transpondeur est mise en résonance parallèle chargée par la résistance d'entrée de l'électronique de traitement de l'information et égale à $10k\Omega$.

1/ Dessiner le schéma électrique côté transpondeur.

2/ Le tracé de l'impédance de la bobine L en fonction de la fréquence est donné en figure 8.

- Justifier le choix de la série S100 et montrer que la valeur de L est proche de 10μH.
- En déduire la valeur de la capacité parasite C_p de la bobine.

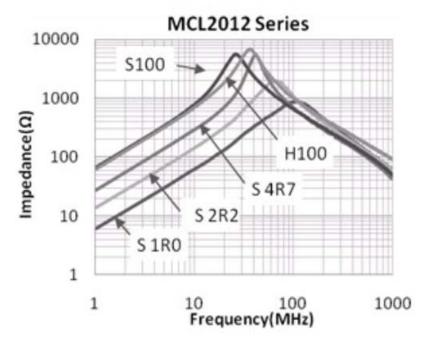


Figure 8 : Impédance en fonction de la fréquence de bobines CMS de chez Sunlord

3/ Tracer la variation de la tension (V) en sortie du transpondeur chargé en fonction de la distance x_0 entre la bobine du lecteur et celle du transpondeur pour $x_0 = 2$, 4 et 6 cm et pour un courant traversant la bobine du lecteur I_1 de valeur crête égale à 100mA. Au préalable, on calculera le coefficient de mutuelle inductance pour chacune de ces distances.

Caractéristiques des bobines du transpondeur et du lecteur :

- $Rayon \ des \ spires = 2,2 \ cm$
- Nombre de spires = 6
- $\mu_0 = 4\pi . 10^{-7} H/m$
