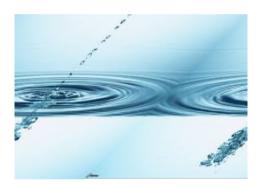


Propagation

Quand la longueur d'onde est grande devant les dimensions des circuits...

Notion de propagation d'onde

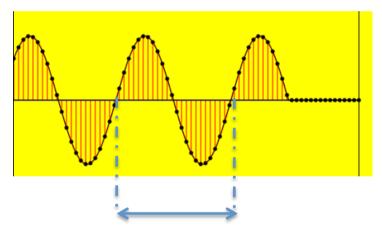
Les ronds dans l'eau



Expérience commune

https://youtu.be/xjfd-gu1vA4

Agitation d'une corde



Longueur d'onde $\boldsymbol{\lambda}$

http://www.walter-fendt.de/html5/phen/standingwavereflection_en.htm

propagation

Le phénomène de propagation existe toujours, cependant on peut ne pas en tenir compte si les dimensions du circuit sont beaucoup plus faibles que la la longueur d'onde.

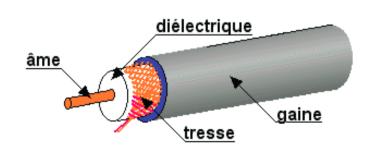
$$\lambda = \frac{V_p}{f} \qquad \text{V}_p : \text{Vitesse de propagation}$$

$$\lambda : \text{Longueur d'onde} \qquad \qquad f : \text{fréquence}$$

Exemple : onde électromagnétique f=300 MHz dans le vide $(V_p = 3~10^8~m/s), ~\lambda = 1~m$.

Le câble coaxial

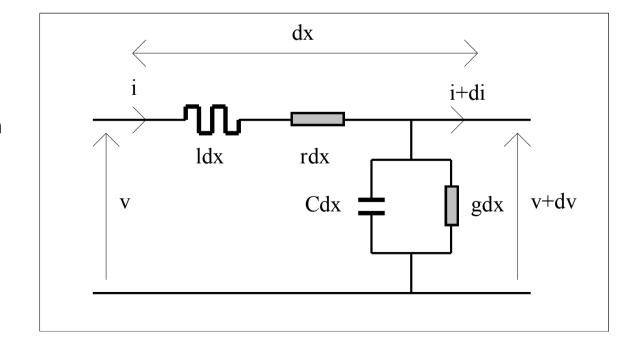
COAXIAL CABLE



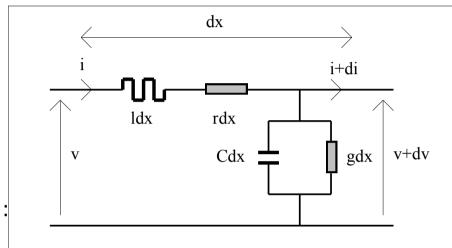
Le câble coaxial

En BF on a juste 2 courts-circuits qui relient une générateur à une charge

En HF on doit considérer le phénomène de propagation on modélise alors chaque tronçon de la ligne par le circuit :



Equations de propagation



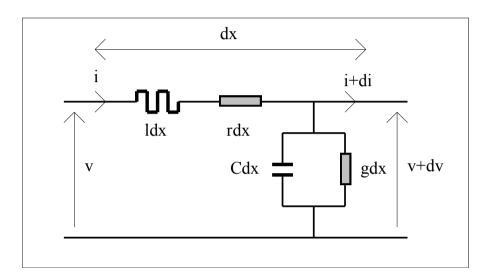
v(x,t) et i(x,t) vérifient les équations :

$$\frac{\partial^2 v(x,t)}{\partial x^2} = lC \frac{\partial^2 v(x,t)}{\partial t^2} + (rC + \lg) \frac{\partial v(x,t)}{\partial x} + rg.v(x,t)$$

$$\frac{\partial^2 i(x,t)}{\partial x^2} = lC \frac{\partial^2 i(x,t)}{\partial t^2} + (rC + \lg) \frac{\partial i(x,t)}{\partial x} + rg.i(x,t)$$

Equations de propagation

Si on considère une ligne sans perte, C'est à dire r=0 et $g=\infty$

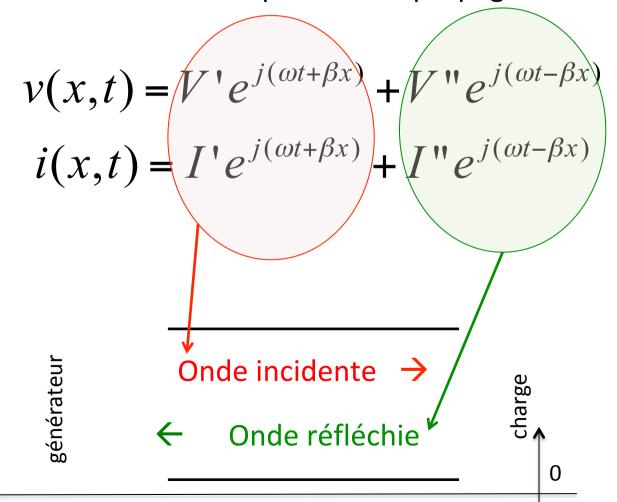


$$\frac{\partial^2 v(x,t)}{\partial x^2} = lC \frac{\partial^2 v(x,t)}{\partial t^2}$$

$$\frac{\partial^2 i(x,t)}{\partial x^2} = lC \frac{\partial^2 i(x,t)}{\partial t^2}$$

Câble coaxial en régime sinusoïdal

La résolution des équations de propagation donne :



X

Câble coaxial en régime sinusoïdal

La résolution des équations de propagation donne :

$$v(x,t) = V'e^{j(\omega t + \beta x)} + V''e^{j(\omega t - \beta x)}$$

$$i(x,t) = I'e^{j(\omega t + \beta x)} + I''e^{j(\omega t - \beta x)}$$

$$\beta = \omega \sqrt{lC}$$

Pulsation
$$\omega = \frac{2\pi}{T}$$
 $\beta = \frac{2\pi}{\lambda}$ Constante de propagation

T est la période dans le temps

 λ est la période dans l'espace

vitesse de propagation

$$V_p = \frac{\omega}{\beta}, \quad V_p = \frac{1}{\sqrt{lC}}$$

La vitesse de propagation est donnée par le rapport de la pulsation sur la constante de propagation

Impédance caractéristique

On peut montrer que la tension et le courant peuvent s'écrire :

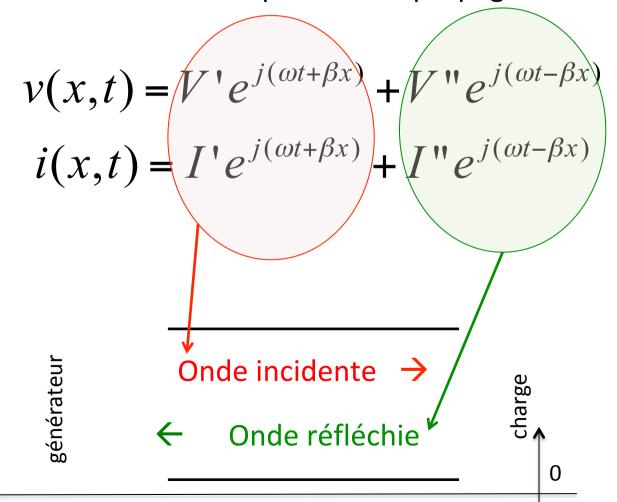
$$v(x,t) = V'e^{j(\omega t + \beta x)} + V''e^{j(\omega t - \beta x)}$$

$$i(x,t) = \frac{1}{Z_C} (V' e^{j(\omega t + \beta x)} - V'' e^{j(\omega t - \beta x)})$$

$$Z_C = \sqrt{\frac{l}{C}}$$

Câble coaxial en régime sinusoïdal

La résolution des équations de propagation donne :

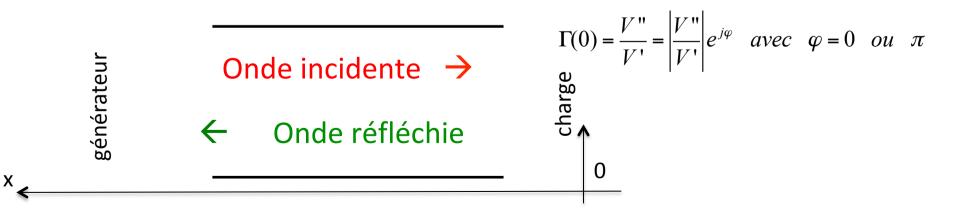


X

Coefficient de réflexion

$$\Gamma(x) = \frac{V''e^{j(\omega t - \beta x)}}{V'e^{j(\omega t + \beta x)}}, \qquad \Gamma(x) = \frac{V''}{V'}e^{-j2\beta x}$$

Quand on se déplace le long du câble, le module du coefficient de réflexion est constant, seule sa phase varie.



Coefficient de réflexion

En bout de ligne, au niveau de la charge Z_{l} (x=0)

$$\Gamma(0) = \frac{V''}{V'} = \left| \frac{V''}{V'} \right| e^{j\varphi} \quad avec \quad \varphi = 0 \quad ou \quad \pi$$

$$\Gamma(0) = \frac{Z_l - Z_c}{Z_l + Z_c}$$
Onde incidente \rightarrow

$$\leftarrow \quad \text{Onde réfléchie}$$

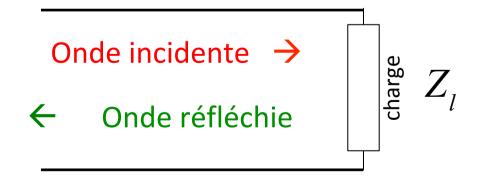
Rapport d'Onde Stationnaire

$$ROS = \frac{\left|V'\right| + \left|V''\right|}{\left|V'\right| - \left|V''\right|} \qquad ROS = \frac{1 + \left|\Gamma\right|}{1 - \left|\Gamma\right|}$$

$$ROS = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

http://www.walter-fendt.de/html5/phen/standingwavereflection_en.html

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string en.html

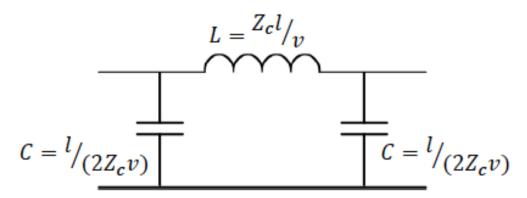


Influence des câbles en électronique numérique

Problématique:

Aux fréquences élevées, l'impédance des fils d'alimentation a une influence sur la tension aux bornes des circuits

Schéma équivalent (modèle en Π) d'un tronçon de ligne sans pertes et de longueur $l < \lambda$



Exemple: câble coaxial RG58:

$$v = \frac{1}{\sqrt{\varepsilon \mu}}$$

$$v = \frac{1}{\sqrt{\varepsilon \mu}} \qquad Z_c = \frac{1}{2\pi} \sqrt{\frac{\mu}{\varepsilon}} \ln \frac{D}{d}$$

$$v \simeq 2.10^8 \text{m/s}$$
 $Z_c = 50\Omega$

$$Z_c = 50\Omega$$

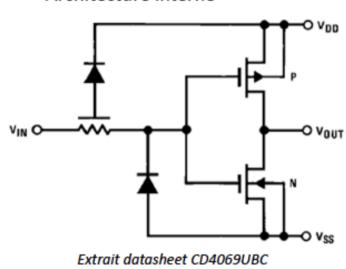
v: vitesse de propagation

 Z_c : impédance caractéristique

Influence des câbles en électronique numérique

Cas de l'inverseur CMOS (CD4069)

Architecture interne

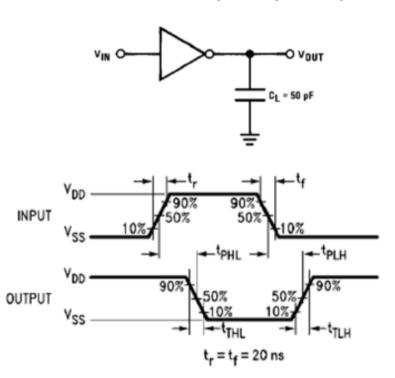


Hypothèses:

MOS passant = résistance MOS bloqué = circuit ouvert

www.fairchildsemi.com

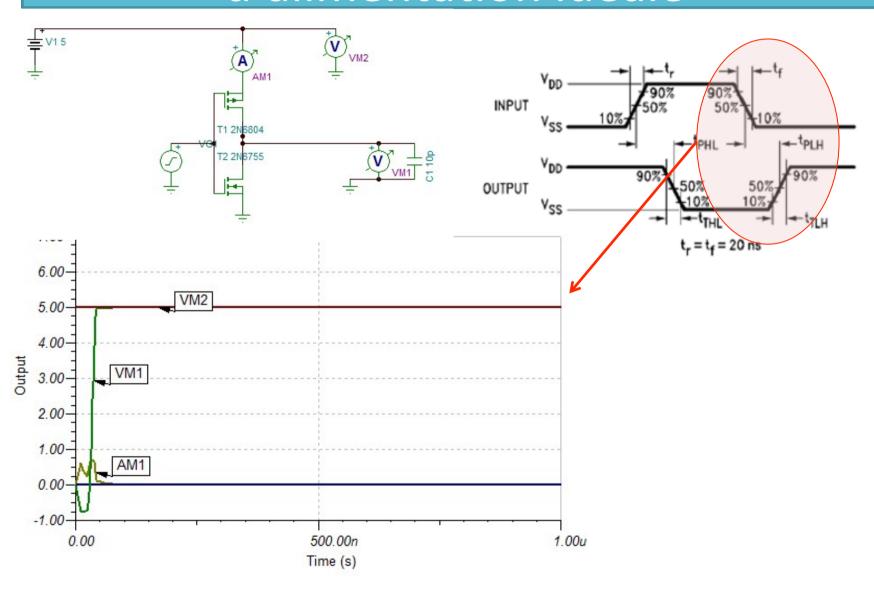
Caractéristiques dynamiques



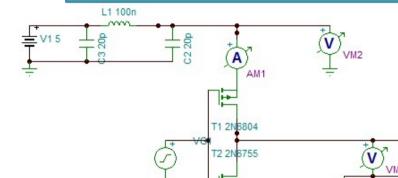
Temps de montée $t_{TLH} = 80 \text{ns}$ (typ. @V_{DD}=5V)

$$R_{PMOS} = \frac{\Delta t_{TLH}}{2,2C_L} \simeq 730\Omega$$

Inverseur CMOS avec ligne d'alimentation idéale

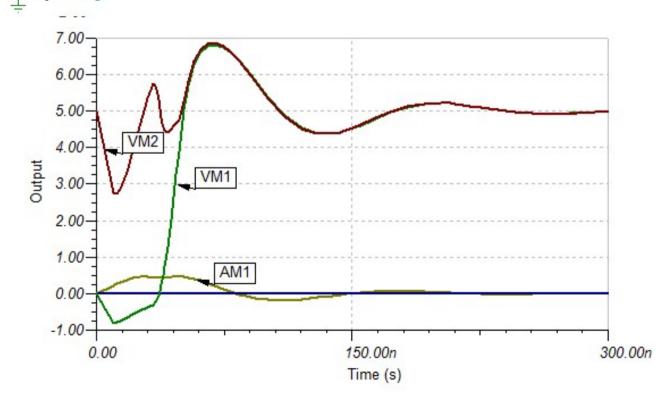


Inverseur CMOS avec ligne d'alimentation réelle

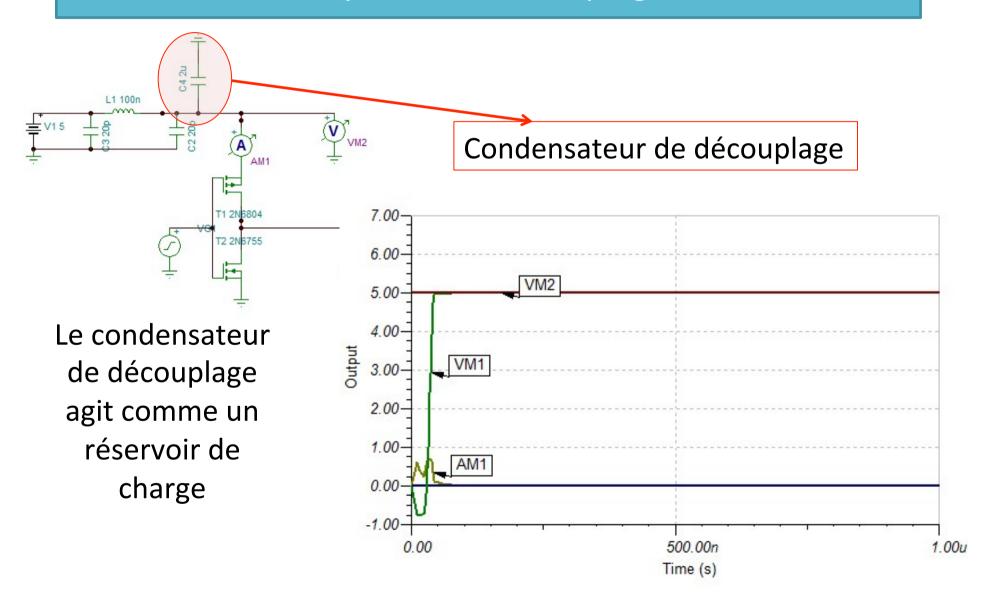


La tension d'alimentation n'arrive plus!

Pour résoudre ce problème on place au plus près du circuit CMOS un condensateur dit de découplage entre l'entrée V_{DD} et la masse



Inverseur CMOS avec ligne d'alimentation réelle et capacité de découplage

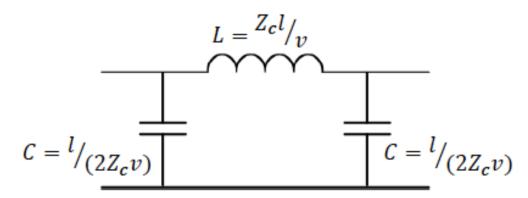


Influence des câbles en électronique numérique

Problématique:

Aux fréquences élevées, l'impédance des fils d'alimentation a une influence sur la tension aux bornes des circuits

Schéma équivalent (modèle en Π) d'un tronçon de ligne sans pertes et de longueur $l < \lambda$



v: vitesse de propagation

 Z_c : impédance caractéristique

Exemple: câble coaxial RG58:

$$v = \frac{1}{\sqrt{\varepsilon \mu}}$$

$$v = \frac{1}{\sqrt{\varepsilon \mu}} \qquad Z_c = \frac{1}{2\pi} \sqrt{\frac{\mu}{\varepsilon}} \ln \frac{D}{d}$$

$$v \simeq 2.10^8 \text{m/s}$$
 $Z_c = 50\Omega$

$$Z_c = 50\Omega$$