Micro and Nano- Electronics Reliability Classical approach and new trends PART 2 0 : Electrostatic Discharges

Triboelectricity

The most important type of charge separation involves the contact and friction between solids known as triboelectricity. When two solid materials, A and B, contact and possibly rub against each other, electrons could move across the interface.

Metals

Triboelectrification may happen when the two contacting materials are metals. When two metals contact, a voltage difference is established across the interface, with a magnitude from a couple of tenths to a few volts.

If the metals are "well-defined" metals, the contact potential difference can be calculated from the work functions, the energy it takes to remove a loosely bound electron from the metal.

Insulators

It is conceivable that only electrons located close to the surface can participate in the charging of highly isolative materials. Similar to metals, for some of these materials it is possible to measure the work function for loosely bound electrons.

MATERIALS	POLARITY		Theoelectricity				
MATERIALS	FULAR	-	· · · · · · · · · · · · · · · · · · ·				
Acetate	+	-					
Glass	+	-	The veletive positioning of the metaviole				
Human Hair	+	-	 The relative positioning of the materials 				
Nylon	+	-	governs the magnitude and polarity of				
Lead	+	-	the charge that requite when the				
Aluminum	+	_	the charge that results when the materials contact and separate.				
Paper	+	-					
Polyurethane	+	-					
Cotton	+	-					
Steel	+	-	— — — — — — — — — —				
Hard Rubber	+	-	 The farther apart the materials are in 				
Acetate Fiber	+	-	the series, the greater the magnitude of				
MYLAR*	+	-					
Epoxy Glass	+	-	the charge.				
Nickel, Copper, Silver	+	-	-				
UV Resist	+	-					
Stainless Steel	-÷-	-					
Synthetic Rubber	-j-	-					
Acrylic		-					
Polystyrene Foam	-j-	-					
Polyurethane Foam		-					
Polyester	-j-	-					
Polyethylene		-					
Polypropylene	-5-	-					
PVC (Vinyl)	-1-	-					
TEFLON*	+	-					
Silicone Rubber	+	-	université				
* Trademark of E.I. Du Pont	_	_	lectronics Reliability				

Electrostatic potential					
	10%	40 %	55%	КП	
Person walking on a carpet		15	7.5		
Person walking on a vinyl floor	12	5	3		
Operator on a bench	6	0.5	0.4		
Ceramic cases in a plastic container	2	0.7	0.4		
Ceramic cases in a vinyl container		4	2		
Ceramic cases in polystyrene		5	3.5		
Circuits when opening bag		20	7		
Circuits in automatic pick and place		11	5.5	(kV)	
Microelectronics Reliability BORDEAUX Part 2.0: ESD	1	im	unive "B	orsité ORDEAUX 10	

 Electrostatic d on where and charge build-u There are 3 ir semiconducto different situat Human Bo Machine M Charged E 	Industry-standard ESD n ischarge (ESD) occurs in a va how the static charge is accur p is dissipated. ndustry-standard ESD models r devices are to be tested for F ions of electrostatic build-up a dy Model (HBM) lodel (MM). evice Model (CDM)	nodels niety of ways, depending mulated and how the that define how ESD sensitivity under nd discharge:
BORDEAUX	Microelectronics Reliability Part 2.0: ESD	BORDEAUX

	The Machine M	odel (MM)
 C ir tf T U v c n 	Driginated in Japan as a result of investigating worst-case scenarios of the HBM, the MM simulates a more apid and severe electrostatic discharge rom a charged machine, fixture, or tool. The MM test circuit consists of charging up a 200 pF capacitor to a certain oltage and then discharging this apacitor directly into the device being ested through a 500 nH inductor with to series resistor	High Supply Voltage elmBE
• E J A E T	Examples of industry standards EDEC's JESD22-A115 and ESD Association's ESD STM5.2: Electrostatic Discharge Sensitivity Festing Machine Model.	http://www.siliconfareast.com/esdmodels.htm
	Microelectronics Reli BordeAux Part 2.0: ESD	ability Université *BORDEAUX 18

Charged Device Model (CDM)

- Not all ESD events involve the transfer of charge into the device. Electrostatic discharge from a charged device to another body is also a form of ESD, and a quite commonly encountered one at that.
- A device can accumulate charge in a variety of ways, especially in situations where they undergo movement while in contact with another object, such as when sliding down a track or feeder. If they come into contact with another conductive body that is at a lower potential, it discharges into that body. Such an ESD event is known as Charged Device Model ESD, which can even be more destructive than HBM ESD (despite its shorter pulse duration) because of its high current.
- Discharge Sensitivity Testing -- Charged Device Model.

