1

 2. Electron 3. Induced 4. Reliabili 5. PoF app 6. Case of 	nigration physics failure modes ty statistical models proach: FEM simulations of mass fi study: Package on Package	lux migrations

Introduction
 Few reliability problems have attracted as much attention in the scientific literature as electromigration.
 First identified as a failure mechanism over 50 years ago, when it surprised and briefly threatened the existence of the integrated circuit industry.
Subject of intensive research and development ever since
Wear-out failure
caused by the degradation of the component materials,
\checkmark the amount of heat
✓ current or voltage applied during use.
To effectively produce design rules for whatever material
choice is made, failure mechanisms must be well understood
International Sector Microelectronics Reliability: Part 2 Université BORDEAUX Hélène Frémont *BORDEAUX

	First summary	
 If the mass flux is existence of diverse Such divergence By non-homory for instance) At surfaces of 	s homogenous no defects wi orgences in the mass flux lead s can be caused ogeneities in the microstructu r interfaces	II occur. Only the ds to migration effects. re (grain boundaries
Temperature composition	gradients and non-homogen	eities in the chemical
iut geil -Bordeaux Mic	croelectronics Reliability: Part 2 Hélène Frémont	Université BORDEAUX

- increasing. This leads to joule heating in the metallization.Depending on the geometry of the metallization structure temperature gradients can occur.The thermo-transport induces a mass flux called thermomigration
- and is depending on the temperature gradient grad. T, the atomic density N, Boltzmann's constant k_B , the square of the temperature T, the activation energy E_A associated with the diffusion process, the diffusion coefficient D_0 and the heat of transport Q.

$$\overrightarrow{J_{TM}} = -\frac{NQ}{k_B T^2} D_0 \exp\left(-\frac{E_A}{k_B T}\right) grad T$$

 Introduction
 Microelectronics Reliability: Part 2
 Université BORDEAUX

 BORDEAUX
 Hélène Frémont
 27

ingradon oneoto. meaoing	Migration	effects:	modeling
--------------------------	-----------	----------	----------

3. Stress Migration

- Stress migration is a failure mechanism where stress applied to metal lines causes the metal atoms to creep, forming voids in metal lines : increased metal line resistance and disconnection.
- Stress is generated in the metal lines (AI, Cu) used in LSI due to temperature differences between the heat treatment process in the manufacturing process and the operating environment temperature.
- This stress can cause composition deformation in metal lines, resulting in short-circuits between metal lines, or vacancies in the metal lines can creep and converge in a single location, forming a void.
- Stress migration occurs due to the interaction between the metal line stress and the metal atom creep speed. Whereas the metal atom creep speed increases at high temperatures, the stress acting on the metal lines decreases at high temperatures, so there is known to be a peak to the temperatures at which stress migration occurs.

	Material Prop	erties	
Property	FR-4	Cu	SnAgCu
ρ μΩcm	1e18	1.91	13.3
α _τ 1/K	x,y:1.05 z:0.34	3.95	53.5
Young GPa	x,y:26 z:13	117	450
Poisson	x-y,z:0.42 x,y:0.11	0.35	0.3392
CTE 10 ⁻⁶ /K	x,y:15 z:58	17.1	20
Z*		-4	-23
Q eV		-0.0867	-0.0084
E _a eV		0.9	0.8
iut gell A	/icroelectronics Reliability Hélène Frémont	/: Part 2	Université BORDEAU

Electromigra Phys. 32 (1)	ation in integrated circuit conductors <i>J. Phys. D: Appl.</i> 999) J R Lloyd
Electromigra Specialist J	ation for Designers: An Introduction for the Non- R Lloyd (2002)
 http://www.e 	doitpoms ac uk/tlplib/electromigration/damage.php
Simulation of Weide-Zaag	of Migration Effects in PoP <i>Proc. of the Eurosime</i> K . ge, H. Fremont, L. Wang (2008)
Finite elem Weide-Zaag	ent simulation in metallization for reliability prediction K . ge Chapter 12 in Chemical Mineralogy, Smelting and
Metallization	1 13011.970-1-00092-033-0
 Metallization Sony reliabition <u>HP/tec/cata</u> 	lility handbook <u>http://www.sony.net/Products/SC-</u> log/pdf/chapter2e 201108.pdf

