Nom Prénom	Test d'électronique 1 ^{ére} année	groupe
	IUT GEII Bordeaux juin 2017	

Durée 2 heures ---- 1 page A4 recto/verso manuscrite autorisée Calculatrice Collège autorisée

Questions de cours

Q1 : Remplir le tableau 1 qui concerne les 4 types de contreréaction en électronique.

Q2 : Rappeler l'expression du taux de contre-réaction par lequel le gain est diminué.

Topologie	Type d'ampli	Signal prélevé en sortie	Signal utile en entrée	Unité du Gain	Unité de β	Résistance d'entrée	Résistance de sortie
Série - //	Ampli de Tension	Tension	Tension	Sans unité	Sans unité	Augmentée	Diminuée
//- //	Convertisseur Courant/Tension						
//- Série	Ampli de Courant						
Série - Série	Convertisseur Tension/Courant						

1. Filtre passif pour enceintes électroacoustiques

Nous souhaitons réaliser un filtre pour des enceintes électroacoustiques. Le filtre utilisé est présenté figure 1.

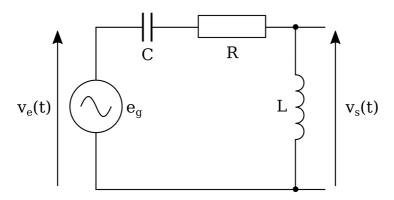


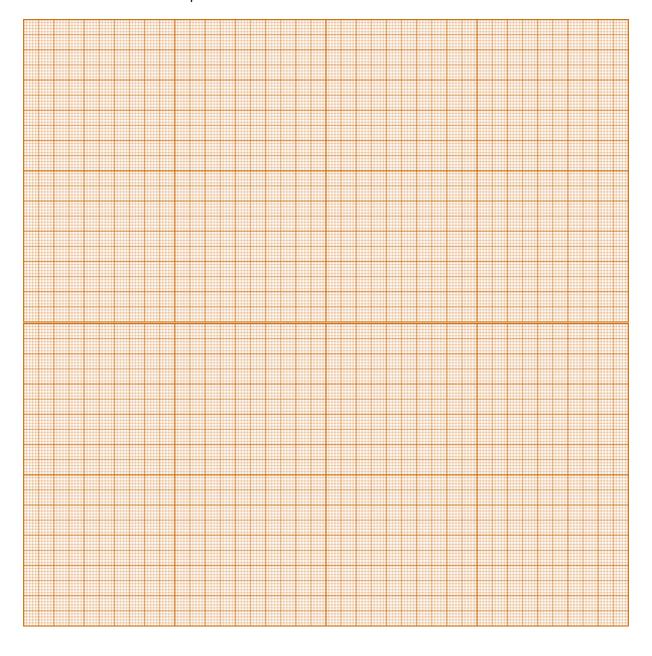
Figure 1: Filtre passif.

Nous donnons la forme canonique des filtres du deuxième ordre suivants :

- Filtre passe bas du 2ème ordre : $K \times \frac{1}{1+j2m\frac{\omega}{\omega_0} + \left(j\frac{\omega}{\omega_0}\right)}$

- Filtre passe haut du 2ème ordre : $K \times \frac{(j\frac{\omega}{\omega_0})}{1+j2m\frac{\omega}{\omega_0}+(j\frac{\omega}{\omega_0})^2}$

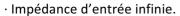
- Filtre passe bande du 2ème ordre : $K \times \frac{\int_{\omega_0}^{\omega_0}}{1 + j2m\frac{\omega}{\omega_0} + \left(j\frac{\omega}{\omega_0}\right)^2}$


1.1)	Déterminer l'expression de $H(\omega)=rac{V_S}{V_e}$ pour le montage figure 1 et l'écrire sous sa forme canonique.
1.2)	Préciser s'il s'agit d'un filtre passe-bas, passe-haut ou passe-bande.
1.3)	Donner par identification l'expression facteur d'amortissement m du montage.
1.4)	Donner l'expression du facteur de qualité $oldsymbol{Q}_{s}$ du montage.
	2. Montogo invoyacius à Amelificateur Onfrationnel
	2. Montage inverseur à Amplificateur Opérationnel
	souhaitons réaliser un montage inverseur de gain –10 avec un amplificateur opérationnel.
2.1)	Proposer un schéma en indiquant les valeurs données aux composants.

Pour réaliser ce montage, on dispose de 2 circuits, de technologie différente, un µA741 et un TL081 , qui ont un slew
rate nominal respectif de $0.5 V/\mu s$ et $13 V/\mu s$.

En entrée du montage on applique un signal carré d'amplitude 1 V, de valeur moyenne 0,5 V, de fréquence 10 kHz. La tension de sortie est limitée à +/- 12 V

2.2) Donner la définition du slew rate.


2.3) Tracer pour les deux cas le signal de sortie $V_s(t)$ sur une période complète : indiquer les valeurs remarquables, notamment sur l'axe des temps.

3. Montage intégrateur à Amplificateur opérationnel

Nous étudions le schéma de la figure 2, dans lequel C = 100 nF et $R = 10 \text{k}\Omega$. La tension V_e est sinusoïdale et nous pouvons utiliser les impédances complexes. L'amplificateur opérationnel utilisé est supposé avoir les caractéristiques

suivantes:

- · Impédance de sortie nulle.
- · Gain différentiel égal à A.
- · Gain en mode commun nul.

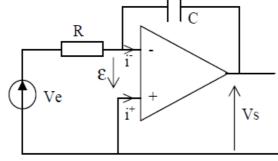


Figure 2 : Circuit d'étude.

Partie 1 : AOP idéal

Le gain A est supposé dans un premier temps infini : l'amplificateur opérationnel dans cette question est donc « idéal ».

- Dans quel régime, linéaire ou comparateur, l'AOP est-il monté ? Justifier votre réponse.
- 3.2) Exprimer la fonction de transfert V_s/V_e en utilisant les notations complexes en supposant le gain A infini, il n'apparaitra donc pas ici dans l'expression.

- 3.3) Donner l'expression littérale de la fréquence de transition f_T puis donner sa valeur numérique.
- 3.4) Tracer sur le 1er graphe semi-log en fin d'exercice, en bleu, le diagramme de Bode en module et argument de cette fonction de transfert.

Partie 2 : AOP à gain constant en fonction de la fréquence

Le gain A de l'amplificateur opérationnel n'est en fait pas infini : on ne peut plus considérer que V + = V . Nous supposons cependant que sa valeur ne dépend pas de la fréquence : A = 1000.

Il faut montrer que la fonction de transfert $A_{m1} = V_s/V_e$ du montage se met sous la forme suivante :

$$A_{m1} = \frac{Vs}{Ve} = \frac{H_1}{1 + j\frac{f}{f_1}}$$

Avec H 1	, le gain statique du montage et $m{f_1}$, la fréquence de coupure du montage. Pour ce faire :
3.5) E	xprimer V_s en fonction de $\varepsilon = V^+ - V^-$ et de A .
3.6) E	xprimer V ⁺ .
3.7) E	crire l'équation au nœud « moins » en utilisant les impédances complexes
, _	
3.8) E	liminer $oldsymbol{V}^{ au}$ entre ces deux équations, et trouver une relation entre $oldsymbol{V}_s$ et $oldsymbol{V}_e$

3.9) Montrer pour finir que le gain $\boldsymbol{A_{m1}}$ peut s'écrire : $A_{m1} = \frac{-A}{1+j(A+1)RC\omega}$

3.10)												nt né						1	ľ	= >	ф	re	es	S	io	n	(de	9	Н	1	et	t	C€	ell	e	C	de	•]	f 1	€	er	1	fc	n	ct	ic	n	C	le	S	él	ér	n	en	ts	6 (dı	J	m	nc	n	ta	ag	e	€	et	1	fa	ir	e
3.11)	tr N	а В	c∈ :	er p	, <u>e</u>	er uı	1	rc ce	u eu	x	e q	, I	e i r	d n'a	ia. au	gı ır	ra	m	۱r	n	е	d	e	В	o	de	9	e	n	m	0	dι	ıl٥	e	et	t a	ar	g	ur	m	eı	nt	: c	de	c	ı a de	tte	e 1	fo	nc	ti	OI	า (de	t	ra	n:	sf	er	t.											