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Introduction

Automatic control at Evering up to now
Modeling

From physical equations: helicopter model, state space model of a plane...
Using identification

Control

Proportional Integral Derivative control
Linear Quadratic control
Numerical control
Robust multi-input multi-output control (M2)

⇒ The topic of this course is diagnosis

Overall concept of diagnosis involves two essential tasks
1 detect an abnormal behavior affecting a system (fault)
2 isolate (localize) the faulty component (sensor, actuator...)

⇒ introductive examples of diagnosis in aerospace applications
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Introduction

Example 1: failures affecting a flight control system

Symptom: undesired oscillations of flight control surfaces
Consequences: flight performance and handling qualities degradation,
actuator wear...
Cause: malfunction of electrical components of the control servo-loop

⇒ How to detect this fault in flight in order to switch to another actuator?
(each flight control surface has two redundant actuators)

3 / 62



Introduction Outline FDI methods Parity space

Introduction

Example 2: failures affecting the HL-20 re-entry vehicle

concept designed by NASA for earth-to-orbit
manned orbital missions: transfer a crew to the
ISS, satellites servicing...

objectives: supplement to the USS shuttle orbiter
with low operational costs, improved flight safety,
possibility of landing on conventional runways

7 control surfaces

2 Inertial Measurement Units (accelerometers and
gyroscopes), 1 air data computer (attitude,
dynamic pressure, speed), 1 GPS

⇒ actuator faults on wing flaps (lock-in-place due to control servo-loop,
swerve due to hydraulic drive system malfunction)

⇒ sensor fault on IMU (damaging of sensor during the hypersonic phase,
bias, drift)
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Introduction

Example 3: MICROSCOPE (MICRO-Satellite à trâınée Compensée pour
l’Observation du Principe d’Equivalence) by CNES

300 kg minisatellite launched on April 25 2016

objective: test the equivalence principle with a
better precision than on Earth (100 times)

instrument: constituted of two identical differential accelerometers, each
accelerometer contains 2 concentric cylindrical proof masses controlled in
the center of a cage by electrostatic levitation

→ the reference accelerometer has test masses of same material (Pt)
→ the test accelerometer has test masses of different materials (Pt/Ti)

̸= control applied to the two masses ⇒ violation of equivalence principle

experiment very sensitive to trajectory deviation ⇒ necessity to detect:

→ actuator faults: lock-in of some of the 12 nozzles diaphragms
→ sensor faults: bias on the position and speed data returned by IMU
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Introduction

Example 3: MICROSCOPE (MICRO-Satellite à trâınée Compensée pour
l’Observation du Principe d’Equivalence) by CNES

The last results of the MICROSCOPE mission were
published on September 14, 2022 and confirm the
equivalence principle with an unprecedented precision of
10−15. This result confirms once again the theory of
General Relativity proposed by Albert Einstein. [IHES]

Launched in 2016, a century after the publication of Einstein’s theory, the MICROSCOPE mission aims to test the
equivalence principle between inertia and gravitation, a fundamental pillar of General Relativity, postulating that all
bodies fall in the same way in the vacuum. The violation of the equivalence principle is predicted by some unification
theories between gravitation and quantum physics. In particular, a weak but non-zero violation of the equivalence
principle by the dilaton in string theory has been predicted by recent work studying the mechanism of cosmological
attraction – hence the importance of testing the equivalence principle with high precision. The mission was designed
by the Office National d’Etudes et de Recherches Aérospatiales (ONERA), in collaboration with the Observatoire de
la Cote d’Azur (OCA), the CNES (Centre National d’Etudes Spatiales) and the ZARM (Bremen, Germany) [...]
MICROSCOPE uses very advanced technologies to compare the free fall acceleration of two bodies of different
compositions, one made of platinum, the other of titanium. The whole thing takes place aboard a satellite that
orbited the Earth from April 2016 until October 2018, making 1,642 revolutions and thus traveling 73 million km,
equivalent to half the Earth-Sun distance. Preliminary results were published in 2017 – this was already a
confirmation of the equivalence principle with unparalleled accuracy that allowed the mission’s co-investigators and
project leaders to win the 2019 Grand Prix Servant of the French Academy of Sciences.
The analysis of the data collected during two and a half years by the ONERA and OCA scientific teams, with the
contribution of CNES and the collaboration of European laboratories, was published on September 14, 2022 in two
prestigious journals: Physical Review Letters, and Classical and Quantum Gravity. These latest results push the limits
of the accuracy of the equivalence principle test even further. With its results, MICROSCOPE provides important
constraints on new theories of gravitation at a level of precision that researchers expect to remain unmatched for a
long time.
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Introduction

Objectives of the course

Overview of fault detection and isolation methods
used in aerospace applications
Focus on model-based approaches and particularly
on the parity space approach
Case study: in-flight fault detection and isolation
for a quadcopter

Organization of the sessions

8 sessions with both courses and exercises
1 session dedicated to a past exam
4-5 practical work sessions for the case study, including control part (part
of the avionics project for ENSPIMA students)

Required background

basic knowledge on state space modeling and numerical control
working knowledge on Matlab/Simulink
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Outline of the course

1 Fault detection and isolation methods overview
Fault diagnosis tasks (definitions)
Signal processing approaches
Hardware redundancy
Analytical redundancy

2 Parity space approach
Reminder on sampled data systems
Static parity space approach
Dynamic parity space approach
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Outline of the course
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Fault diagnosis tasks (definitions)

Fault detection task

Objective: spot the occurence of events that may lead to abnormal
behavior of the system

→ faults must be distinguished from disturbances that divert the system from
the desired behavior but occur in normal functioning

Fault isolation task (or localization task)

Objective: delimit the fault to a component or a set of components
(actuators, sensors)

Fault diagnosis techniques
Model-free techniques

→ signal processing approaches
→ hardware redundancy

Model-based techniques

→ analytical redundancy
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Signal processing approaches

Hypothesis

Some measurable system variables carry information about the faults

Principle

Use signal processing to monitor if the variables behave normally

Time domain analysis
Magnitudes (limit-value checking)

→ if variables leave a range corresponding to
a normal functioning, an alarm is triggered
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Signal processing approaches

Example: total air temperature probe of Dassault Mercure

Temperature indication results from a resistance
measurement whose value follows a known law
depending on temperature

Measuring range: [−99◦C,+50◦C]

Monitored faults
loss of power supply, short circuit
error affecting measurement processing

→ for instance when temperature leaves the range
→ detected using an electrical circuit

use of AMM to localize the fault

Advantage: easy to implement

Drawbacks
not efficient for wide operating range systems
extra cost for the implementation of additional measurement chains

12 / 62



Introduction Outline FDI methods Parity space

Hardware redundancy

Principle

introduce additional identical (redundant) hardware components
→ fault detected if output of the original component differs from the

redundant ones

Dual modular redundancy

Critical component is duplicated

component
u m1

m2redundant
component

sensor

sensor

rresidual
computation

residual
analysis

alarm

Disturbances and faults

r = m1 −m2 is called residual signal
residual r is compared to a threshold depending on the measure quality

⇒ Faulty component not isolated
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Hardware redundancy

Triple modular redundancy

component
u m1

m2

m3

redundant
component

redundant
component

sensor

sensor

sensor

r1

r2

r3

residual

computation

residual

analysis

alarm

Disturbances and faults

Three residual signals: r1 = m1 −m2, r2 = m1 −m3, r3 = m2 −m3

Voter isolates which component is faulty
Component 1 Component 2 Component 3 r1 r2 r3

✓ ✓ ✓ 0 0 0
✗ ✓ ✓ ̸= 0 ̸= 0 0
✓ ✗ ✓ ̸= 0 0 ̸= 0
✓ ✓ ✗ 0 ̸= 0 ̸= 0
✓ ✗ ✗ ̸= 0 ̸= 0 ̸= 0
✗ ✓ ✗ ̸= 0 ̸= 0 ̸= 0
✗ ✗ ✓ ̸= 0 ̸= 0 ̸= 0
✗ ✗ ✗ ̸= 0 ̸= 0 ̸= 0

⇒ isolates a single fault only
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Hardware redundancy

General case: n identical components

component
u m1

mnredundant
component

redundant
component

sensor

sensor

sensor

r1

rn

residual

generator

residual

analysis

alarm

Disturbances and faults

→ faulty component isolated if a max. of
⌊
n−1
2

⌋
faults occur simulaneously

Example: detection and localization of sensor faults on Airbus A380
→ angle of attack, pitch/roll/yaw rates...

Advantages: easy to design and implement

Drawbacks
faults affecting all components simultaneously cannot be detected
(loss of power supply, electrical ground problem...)
high costs (thus restricted to a number of key components)
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Analytical redundancy

General idea
replace hardware redundancy by a plant model implemented in a computer
→ involves the measurement and control signals of the plant
→ requires a dynamical model of the plant (actuators + process + sensors)

actuators process sensors

actuators
model

process
model

sensors
model

u y

ym
r

residual generator

residual

computation

residual

analysis

alarm

Disturbances and faults

plant behavior is compared in real time to its model behavior
→ a difference can be interpreted as a symptom of a fault

Avantages:
no extra cost
easy to implement (in the computer hosting the control law)
allows to discriminate the disturbances and faults effects ⇒ better results
than using signal processing based approaches
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Analytical redundancy

Back to example 1: failures affecting a flight control system

Symptom: undesired oscillations of flight control surfaces
Consequences: flight performance and handling qualities degradation,
actuator wear...
Cause: malfunction of electrical components of the control servo-loop

⇒ Before A380: signal processing based (without model)
⇒ A380 program: analytical redundancy since oscillations belong to the

control law bandwidth (model-based)
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Analytical redundancy

Principle
Compare plant behavior (affected by faults and disturbances) to its model

→ comparison result: residual (fault indicating signal)

Implementation in the case of digital control

+

−

ZOH

DAC ADC

yk

ykuk

uk

refk

sampled data system

computer

εk

controller actuator process sensor

rk

u(t) y(t)

residual
generator

residual
analysis

disturbances d(t) and faults f (t)

detection

localization

→ residual generator designed according to sampled data system model

Objective (ideal case)
fault-free case: rk = 0 ∀ dk in faulty case: rk ̸= 0

Objective (realistic case)
rk must be the least sensitive to dk and the most sensitive to fk
residual analysis generates alarm (threshold...) and isolates the fault
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Analytical redundancy

Types of detectability
Weak detectability
→ residual is affected by fault in transient state only

r(t)

f (t)

t

Strong detectability
→ residual is affected by fault in steady state

r(t)

f (t)

t

⇒ Otherwise, the fault is said to be undectable by the residual

Diagnosis problem
Given a sampled data system model, how to design the residual generator
and how to perform the residual analysis?

⇒ Methodology presented in this course: the parity space approach
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Reminder on sampled data systems

Bloc diagram involving D/A converters for control and FDI purposes

+

−

ZOH

DAC ADC

yk

ykuk

uk

refk

sampled data system

computer

εk

controller actuator process sensor

rk

u(t) y(t)

residual
generator

residual
analysis

disturbances d(t) and faults f (t)

detection

localization

actuators + plant + sensors ≡ Σ modeled by state space representation

→ Σ:

{
ẋ(t) = Ãx(t) + B̃u(t)

y(t) = C̃x(t) + D̃u(t)

actuators + process + sensors + DAC + ADC ≡ Σk

→ Σk :

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bf f (k)

y(k) = Cx(k) + Du(k) + Ddd(k) + Df f (k)

with A = eÃTe , B =

∫ Te

0

eÃ(Te−α)B̃dα, C = C̃ , D = D̃

→ disturbances and fault are assumed to affect the sampled data model
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Parity space approach - principle

Model

Σk

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bf f (k)

y(k) = Cx(k) + Du(k) + Ddd(k) + Df f (k)

x(k) ∈ Rn: state, u(k) ∈ Rm: control, y(k) ∈ Rp: measure
d(k) ∈ Rmd : disturbance, f (k) ∈ Rmf : fault

Objective

Compute r(k) using signals u(k), y(k) and model Σk

Residual must be sensitive to f (k), robust w.r.t. disturbances d(k)

Principle of parity space approach

use direct redundancy between measured signals
(when a measured variable can be derived from the other)

→ at time k, r(k) is generated from y(k) et u(k) only
⇒ static parity space

use time redundancy linking measures and inputs at different time instants

→ at time k, r(k) is generated from gathered values of measures and controls
⇒ dynamic parity space
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Static parity space - introductive examples

Model

Σk

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bf f (k)

y(k) = Cx(k) +���Du(k) + Ddd(k) + Df f (k)

x(k) ∈ Rn: state, u(k) ∈ Rm: control, y(k) ∈ Rp: measure
d(k) ∈ Rmd : disturbance, f (k) ∈ Rmf : fault

Objective: find r(k) = f (y(k)) sensitive to faults only

Example 1: hardware redundancy

y(k) =

[
y1(k)
y2(k)

]
=

[
1
1

]
x(k) +

[
f1(k)
f2(k)

]
→ fi (k): fault on sensor i

r(k) = y1(k)− y2(k)︸ ︷︷ ︸
computation form

=���x(k) + f1(k)−���x(k)− f2(k) = f1(k)− f2(k)︸ ︷︷ ︸
evaluation form

⇒ r(k) can detect both f1(k) and f2(k)

Model
Σk : y(k) = Cx(k) + Ddd(k) + Df f (k)
x(k) ∈ Rn: state, u(k) ∈ Rm: control, y(k) ∈ Rp: measure
d(k) ∈ Rmd : disturbance, f (k) ∈ Rmf : fault

Objective: find r(k) = f (y(k)) sensitive to faults only

Example 2

y(k) =


y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 0 1
1 2 1
2 0 2
1 0 2
2 2 2


x1(k)x2(k)
x3(k)

+


0 0
0 1
1 2
0 0
0 0


[
f1(k)
f2(k)

]

→ f1(k) affects sensor 3 and f2(k) affects sensors 2 et 3

Computation form :

{
r1(k) = 2y1(k)− y3(k)

r2(k) = y1(k) + y2(k)− y5(k)

→ Exercise: determine the evaluation form and verify that r1(k) et r2(k) are
independent from x(k) but sensitive to f1(k) and f2(k)

→ is it possible to isolate the fault using these residuals ?
⇒ method to derive r1(k) and r2(k) expressions ⇒ static parity space
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Static parity space - introductive examples

Model
Σk : y(k) = Cx(k) + Ddd(k) + Df f (k)
x(k) ∈ Rn: state, u(k) ∈ Rm: control, y(k) ∈ Rp: measure
d(k) ∈ Rmd : disturbance, f (k) ∈ Rmf : fault

Objective: find r(k) = f (y(k)) sensitive to faults only

Example 2

y(k) =


y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 0 1
1 2 1
2 0 2
1 0 2
2 2 2


x1(k)x2(k)
x3(k)

+


0 0
0 1
1 2
0 0
0 0


[
f1(k)
f2(k)

]

→ f1(k) affects sensor 3 and f2(k) affects sensors 2 et 3

Computation form :

{
r1(k) = 2y1(k)− y3(k)

r2(k) = y1(k) + y2(k)− y5(k)

→ Exercise: determine the evaluation form and verify that r1(k) et r2(k) are
independent from x(k) but sensitive to f1(k) and f2(k)

→ is it possible to isolate the fault using these residuals ?
⇒ method to derive r1(k) and r2(k) expressions ⇒ static parity space
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Static parity space - detection

Model

Σk : y(k) = Cx(k) + Ddd(k) + Df f (k)
x(k) ∈ Rn: state, u(k) ∈ Rm: control, y(k) ∈ Rp: measure
d(k) ∈ Rmd : disturbance, f (k) ∈ Rmf : fault

Residual obtained as a linear combination of measures

r(k) = Wy(k) (computation form)

→ W parity matrix
→ determine W in previous exercise
⇒ how to choose W s.t. r(k) is sensitive to faults only?

Evaluation form of the residual

r(k) = Wy(k) = WCx(k) +WDdd(k) +WDf f (k)

→ ideal case (disturbance-free case): r(k) = WCx(k) +WDf f (k)
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Static parity space - detection

Computation of parity matrix W

Evaluation form (disturbance-free case): r(k) = WCx(k) +WDf f (k)

Robustness constraint

→ f (k) = 0 ⇒ r(k) = 0 (for any x(k))

Sensitivity to faults constaint

→ f (k) ̸= 0 ⇒ r(k) ̸= 0

Solution?

⇒ choose W s.t. WC = 0 ⇒ r(k) = WDf f (k)
W is orthogonal to C
W exists if p > rank(C) (measures redundancy), W ∈ R(p−rank(C))×p

Remark: if all the columns of C are independant ⇒ rank(C) = n
⇒ condition becomes p > n (more measures than state variables)

Remark

The term parity comes from the parity bits used in computers
science. These bits introduce redundancy in order to detect a
transmission error affecting digital data.
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Static parity space - detection

Computation of parity matrix W

Evaluation form (disturbance-free case): r(k) = WCx(k) +WDf f (k)

Robustness constraint

→ f (k) = 0 ⇒ r(k) = 0 (for any x(k))

Sensitivity to faults constaint

→ f (k) ̸= 0 ⇒ r(k) ̸= 0

Solution?
⇒ choose W s.t. WC = 0 ⇒ r(k) = WDf f (k)

W is orthogonal to C
W exists if p > rank(C) (measures redundancy), W ∈ R(p−rank(C))×p

Remark: if all the columns of C are independant ⇒ rank(C) = n
⇒ condition becomes p > n (more measures than state variables)

Remark

The term parity comes from the parity bits used in computers
science. These bits introduce redundancy in order to detect a
transmission error affecting digital data.
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Static parity space - detection

Detectability and parity space

Evaluation form: r(k) = WCx(k) +WDf f (k) avec W tq WC = 0

→ reminder: the fault is detectable if ∀ f (k) ̸= 0 ⇒ r(k) ̸= 0
⇒ sensitivity to faults is not guaranteed

All the faults are detectable if WDf has no null column

⇒ a posteriori verification
→ remark: if a fault is detectable, it is strongly detectable
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Static parity space - detection

A method to determine a parity space matrix
⇒ Objective: find W s.t. WC = 0 with C ∈ Rp×n, p > n, rank(C ) = n

1 partition C =

[
C1

C2

]
, C1 ∈ Rn×n, C2 ∈ R(p−n)×n

→ if C1 is full rank, choose W =
[
C2C

−1
1 −Ip−n

]
(hence WC = 0)

→ else go to step 2
2 permute lines of C s.t. the n first lines constitute a full rank matrix and

determine the corresponding transition matrix T ∈ Rn×n s.t. C̃ = TC
(matrix T is constituted of zeros and ones)

3 partition C̃ =

[
C̃1

C̃2

]
, C̃1 ∈ Rn×n, C̃2 ∈ R(p−n)×n (C̃1 is invertible)

4 compute W̃ =
[
C̃2C̃

−1
1 −Ip−n

]
(hence W̃ C̃ = 0)

5 retrieve W according to W = W̃T (hence WC = W̃TC = W̃ C̃ = 0)

⇒ W is not unique (depends for instance on the choice of the linearly
independent lines)

→ this method guarantees the independence of the p − n parity equations

Remark: if rank(C ) < n, remove columns of C in order to retain only
rank(C ) independent columns
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Static parity space - detection

Computation of a parity matrix with Matlab

Objective: find W s.t. WC = 0 with C ∈ Rp×n, p > n, rank(C ) = n

→ W is not unique

In order to get a unique solution, a constraint is added

→ lines of W must constitute an orthonormal basis

Problem writes

→ Find W s.t.

{
WC = 0

WW T = Ip−n

Solution is obtained using W=null(C’)’

→ Remark: result differs from the one found using previous method
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Static parity space - detection

Exercise

y(k) =


y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 0 1
1 2 1
2 0 2
1 0 2
2 2 2


x1(k)x2(k)
x3(k)

+


0 0
0 1
1 2
0 0
0 0


[
f1(k)
f2(k)

]

1 Determine a parity matrix W
2 Find the evaluation form of the residual
3 Does this residual generator allow to detect all faults?
4 Same question with an additional fault f3(k) affecting measure y4(k):

y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 0 1
1 2 1
2 0 2
1 0 2
2 2 2


x1(k)x2(k)
x3(k)

+


0 0 0
0 1 0
1 2 0
0 0 1
0 0 0


f1(k)f2(k)
f3(k)


→ same exercise using MATLAB
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Static parity space - detection

Robustness to disturbances

Model: y(k) = Cx(k) + Ddd(k) + Df f (k)
Residual r(k) = WCx(k) +WDdd(k) +WDf f (k) = WDdd(k) +WDf f (k)
with W s.t. WC = 0
A posteriori verification of robustness

→ if WDd = 0: insensitivity to disturbances

How to take into account robustness a priori?

⇒ choose W s.t. W
[
C Dd

]
= 0

if such a W exists...
→→ existence condition: p > rank(

[
C Dd

]
)

→ simplified existence condition: p > (n +md) (if
[
C Dd

]
is full rank)

If such a W matrix does not exist
→ a scalar residual r̄ is computed as a linear combination of coordinates of r
⇒ r̄ should be the most sensitive to faults and the least sensitive to

disturbances

32 / 62



Introduction Outline FDI methods Parity space

Static parity space - detection

Robustness to disturbances

Model: y(k) = Cx(k) + Ddd(k) + Df f (k)
Residual r(k) = WCx(k) +WDdd(k) +WDf f (k) = WDdd(k) +WDf f (k)
with W s.t. WC = 0
A posteriori verification of robustness

→ if WDd = 0: insensitivity to disturbances

How to take into account robustness a priori?

⇒ choose W s.t. W
[
C Dd

]
= 0

if such a W exists...
→→ existence condition: p > rank(

[
C Dd

]
)

→ simplified existence condition: p > (n +md) (if
[
C Dd

]
is full rank)

If such a W matrix does not exist
→ a scalar residual r̄ is computed as a linear combination of coordinates of r
⇒ r̄ should be the most sensitive to faults and the least sensitive to

disturbances
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Static parity space - detection

Robustness to disturbances

Model: y(k) = Cx(k) + Ddd(k) + Df f (k)
Residual r(k) = Wy(k) = WDdd(k) +WDf f (k) avec W tq WC = 0
Objective

→ generate a residual scalar r̄ from r coordinates:

r̄(k) = vT r(k) = vTWDdd(k) + vTWDf f (k) avec W tq WC = 0

v ∈ Rp−n is called the residual selector
→ v chosen s.t. r̄ is the most sensitive to f and the least sensitive to d

Criterion to be minimized

→ v is chosen in order to minimize criterion

J =
∥vTWDd∥22
∥vTWDf ∥22

=
vTWDdD

T
d W

T v

vTWDfDT
f W

T v

Optimal selector w.r.t. criterion J

v∗ = argmin
v

vTWDdD
T
d W

T v

vTWDfDT
f W

T v

→ how to compute v∗? ⇒ Gantmacher theorem

34 / 62



Introduction Outline FDI methods Parity space

Static parity space - detection

Robustness to disturbances

Gantmacher theorem [Theory of matrices, 1961]

Vector v∗ = argmin
v

vTMv

vTNv
is the eigenvector associated to the smallest

eigenvalue λmin of matrix pencil (M,N) and min
v

vTMv

vTNv
= λmin

Reminder on real matrices pencil
Matrix pencil associated to square matrices M ∈ Rn×n and N ∈ Rn×n

is the set of matrices P(α) = M + αN = (M,N), α ∈ R
Eigenvalues of matrix pencil (M,N):

→ (M,N) has n eigenvalues
→ let q the number of null eigenvalues of N, then (M,N) has q infinite

eigenvalues (equal to +∞) and n − q finite eigenvalues

→ the n − q finite eigenvalues of (M,N) are λ ∈ C : det(M − λN) = 0

Eigenvector Vi associated to eigenvalue λi is Vi ∈ Cn : MVi = λiNVi

→ if M = MT and N = NT ⇒ λ ∈ R, Vi ∈ Rn
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Static parity space - detection

Robustness to disturbances
Residual that is the most sensitive to f and the least sensitive to d :

→ r̄(k) = v∗T r(k) = vTWDdd(k) + vTWDf f (k) with W tq WC = 0

→ v∗ = argmin
v

vTWDdD
T
d W

T v

vTWDfDT
f W

T v

Method to determine optimal selector
1 Find W s.t. WC = 0
2 Determine eigenvalues λ of pencil (WDdD

T
d W

T ,WDfD
T
f W

T )
3 Determine eigenvector v∗ associated to the smallest eigenvalue λmin

Criterion optimal value is λmin:

→ min
v

vTWDdD
T
d W

T v

vTWDfDT
f W

T v
= λmin
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Static parity space - detection

Exercise

y(k) =


y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 0 1
1 2 1
2 0 2
1 0 2
2 2 2


x1(k)x2(k)
x3(k)

+


0 0
0 1
1 2
0 0
0 0


[
f1(k)
f2(k)

]
+


1 0
1 0
1 0
0 1
0 1


[
d1(k)
d2(k)

]

→ d1(k) is the noise affecting measures 1, 2 and 3
→ d2(k) is the noise affecting measures 4 and 5

1 Remind the computation for of the residual r(k) = Wy(k) that is
insensitive to x(k)

2 Give the evaluation form of r(k) depending on d(k) and f (k).
3 Is r(k) sensitive to d(k)? Is it possible to derive a residual that is

insensitive to x(k) and d(k)?
4 Determine r̄(k) the most sensitive to f (k) and the least sensitive to d(k)
5 Give evaluation form of r̄(k) depending on d(k) and f (k)
6 Compute criterion J value for r1(k), r2(k) and r̄(k). Conclude on the

achieved imrovement.
→ Verify the results using Matlab
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Static parity space - detection

Decoupling w.r.t. given faults
Model: y(k) = Cx(k) + D+

f f
+(k) + D−

f f −(k)

→ residual should be the most sensitive to faults f +(k)
→ residual should be the least sensitive to faults f −(k)

Residual obtained using a selector (same method as previously)

→ r+(k) = v∗
+
T r(k) = vT

+WD+
f f

+(k) + vT
+WD−

f f −(k) avec W tq WC = 0

→ v∗
+ = argmin

v+

vT
+WD−

f (D−
f )TW T v+

vT
+WD+

f (D
+
f )

TW T v+

Method to determine the optimal selector
1 Determine W s.t. WC = 0
2 Determine eigenvalues λ of pencil (WD−

f (D−
f )TW T ,WD+

f (D
+
f )

TW T )
3 Determine eigenvector v∗

+ associated to the smallest eigenvalue λmin

Interest

→ if a single fault f +(k) is chosen, residual is the most sensitive to this fault
⇒ using a bundle of such residual generators is a first approach to address the

isolation problem
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Static parity space - detection

Exercice (new matrix C)

y(k) =


y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 2 1
1 0 2
1 1 1
1 0 1
2 0 2

 x(k) +


1 2
1 2
0 0
2 5
0 1


[
f −1 (k)
f −2 (k)

]
+


1
0
3
1
1

 f +(k)

→ residual should be the most sensitive to f +(k)
→ residual should be the least sensitive to f −1 (k) and f −2 (k)

1 Find W and give the computation form of the residual r(k) = Wy(k) that
is insensitive to x(k)

2 Is it possible to determine a residual that is insensitive to x(k) and f −(k)?
3 Find the residual r+(k) that is the most sensitive to f +(k) and the least

sensitive to f −(k)

→ in order to obtain a single solution, set the second coordinate of v∗
+ to 1

4 Give the evaluation form of the residual r+(k) depending on f +(k) and f −(k)
5 Compute the criterion J value for r1(k), r2(k) and r+(k). Conclude on the

quality of the obtained residual.
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Static parity space - isolation

Residual expression in disturbance-free case
r(k) = Wy(k) = WCx(k) +WDf f (k)

→ x(k) ∈ Rn, f (k) ∈ Rmf , r(k) ∈ Rp−rank(C), W ∈ R(p−rank(C))×p s.t. WC = 0

Isolation problem

After the detection of the fault (here, fault is detected when r(k) ̸= 0)
→ from the knowledge of r(k), how to determine which fault occurred?
⇒ which coordinate, among the mf coordinates of f (k), is not null?

Solution
Residuals r(k) move inside a space of dimension p − rank(C )

→ direction of r(k) is a signature of a given fault

Columns of WDf constitute the mf directions to which the residual r(k)
point in presence of a fault

→ in order to isolate the fault, direction of residual r(k) is computed and
compared to WDf
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Static parity space - isolation

Residual expression in disturbance-free case

r(k)=Wy(k)=WCx(k)+WDf f (k), x(k)∈Rn, f (k)=

 f1(k)
...

fmf (k)

∈Rmf,r(k)∈Rp−rank(C)

→ W∈R(p−rank(C))×p s.t. WC=0,

Wrf =WDf∈R(p−rank(C))×mf ,Wrf =
[
W

[1]
rf · · · W [mf ]

rf

]
Isolation method (disturbance-free case)

orientation of r(k) w.r.t. directions given by WDf

⇒ collinearity of r(k) and mf vectors W
[i ]
rf ∈Rp−rank(C) is studied

if r(k) is collinear to W
[i ]
rf ⇒ fault fi is isolated

Example: p − rank(C ) = 2 and mf = 3
objective: isolate 1 fault among 3
3 faults directions

→ Wrf =
[
W

[1]
rf W

[2]
rf W

[3]
rf

]

here r is colinear to W
[2]
rf

⇒ fault f2 is isolated

W
[1]
rf

W
[2]
rf

W
[3]
rf
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Static parity space - isolation

Residual expression in disturbance-free case

r(k)=Wy(k)=WCx(k)+WDf f (k), x(k)∈Rn, f (k)=

 f1(k)
...

fmf (k)

∈Rmf,r(k)∈Rp−rank(C)

→ W∈R(p−rank(C))×p s.t. WC=0,

Wrf =WDf∈R(p−rank(C))×mf ,Wrf =
[
W

[1]
rf · · · W [mf ]

rf

]
Isolation method (disturbance-free case)

orientation of r(k) w.r.t. directions given by WDf

⇒ collinearity of r(k) and mf vectors W
[i ]
rf ∈Rp−rank(C) is studied

if r(k) is collinear to W
[i ]
rf ⇒ fault fi is isolated

Example: p − rank(C ) = 2 and mf = 3
objective: isolate 1 fault among 3
3 faults directions

→ Wrf =
[
W

[1]
rf W

[2]
rf W

[3]
rf

]
here r is colinear to W

[2]
rf

⇒ fault f2 is isolated

W
[1]
rf

W
[2]
rf

W
[3]
rf

r(k)
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Static parity space - isolation

Residual expression in disturbance-free case

r(k)=Wy(k)=WCx(k)+WDf f (k), x(k)∈Rn, f (k)=

 f1(k)
...

fmf (k)

∈Rmf,r(k)∈Rp−rank(C)

→ W ∈ R(p−rank(C))×n s.t. WC=0, W =
[
W [1] · · · W [mf ]

]
Isolation method (disturbance-free case)

Special case: detection of sensors faults

f (k) =

f1(k)...
fp(k)

 ∈ Rp ⇒ 1 fault by sensor

→ Df = Ip ⇒ Wrf = W
⇒ the p columns of W define the p directions of sensors faults

⇒ if r is collinear to W [i ] ⇒ sensor fault on i th measure
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Static parity space - isolation

Residual expression in presence of disturbances
r(k) = Wy(k) = WCx(k) +WDf f (k) +WDdd(k)
→ r(k)∈Rp−rank(C), x(k)∈Rn,f (k)∈Rmf, d(k)∈Rmd, W∈R(p−rank(C))×n s.t. WC=0

→ Wrf=WDf=
[
W

[1]
rf · · ·W

[mf ]
rf

]
∈R(p−rank(C))×mf,Wrd=WDd=

[
W

[1]
rd · · ·W

[md ]
rd

]
∈R(p−rank(C))×md

Isolation method (in presence of disturbances)
orientation of r(k) depends on
→ the mf directions of faults given by columns of Wrf

→ des md directions of disturbances given by columns of Wrd

if r(k) is the most collinear to W
[i ]
rf ⇒ fault fi is isolated

Example: p − n = 2, mf = 3, md = 2
objective: isolate 1 fault among 3
3 directions for faults

→ Wrf =
[
W

[1]
rf W

[2]
rf W

[3]
rf

]
3 directions for disturbances

→ Wrd =
[
W

[1]
rd W

[2]
rd

]
here r is the most collinear to W

[2]
rf

⇒ fault f2 is isolated ⇒ how to evaluate collinearity using Matlab?

W
[1]
rd

W
[2]
rd

W
[1]
rf

W
[2]
rf

W
[3]
rf
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Static parity space - isolation

Residual expression in presence of disturbances
r(k) = Wy(k) = WCx(k) +WDf f (k) +WDdd(k)
→ r(k)∈Rp−rank(C), x(k)∈Rn,f (k)∈Rmf, d(k)∈Rmd, W∈R(p−rank(C))×n s.t. WC=0

→ Wrf=WDf=
[
W

[1]
rf · · ·W

[mf ]
rf

]
∈R(p−rank(C))×mf,Wrd=WDd=

[
W

[1]
rd · · ·W

[md ]
rd

]
∈R(p−rank(C))×md

Isolation method (in presence of disturbances)
orientation of r(k) depends on
→ the mf directions of faults given by columns of Wrf

→ des md directions of disturbances given by columns of Wrd

if r(k) is the most collinear to W
[i ]
rf ⇒ fault fi is isolated

Example: p − n = 2, mf = 3, md = 2
objective: isolate 1 fault among 3
3 directions for faults

→ Wrf =
[
W

[1]
rf W

[2]
rf W

[3]
rf

]
3 directions for disturbances

→ Wrd =
[
W

[1]
rd W

[2]
rd

]
here r is the most collinear to W

[2]
rf

⇒ fault f2 is isolated ⇒ how to evaluate collinearity using Matlab?

W
[1]
rd

W
[2]
rd

W
[1]
rf

W
[2]
rf

W
[3]
rf

r(k)
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Static parity space - isolation

Residual expression in presence of disturbances

if r(k) is the most collinear to W
[i ]
rf ⇒ fault fi isolated

How to evaluate collinearity of two vectors?
the angle between the vectors can be computed

θ1

θ2

θ3

W
[1]
rf

W
[2]
rf

W
[3]
rf

r(k)

→ angle θi retrieved from scalar product rT ·W [i ]
rf = ∥r∥ · ∥W [i ]

rf ∥ · cos(θi )

θi = arccos
rTW

[i ]
rf

∥r∥ · ∥W [i ]
rf ∥

⇒ θi = arccos
rTW

[i ]
rf

√
rT r

√
W

[i ]
rf

T
W

[i ]
rf

→ the smallest θi is, the most r and W
[i ]
rf are collinear

→ fault fi is isolated where i = argmin
i

θi

→ considering above example: min θi = θ2 ⇒ fault f2 isolated
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Static parity space - isolation

Exercise

y(k) =


y1(k)
y2(k)
y3(k)
y4(k)
y5(k)

 =


1 0 1
1 2 1
2 0 2
1 0 2
2 2 2


x1(k)x2(k)
x3(k)

+


0 0
0 1
1 2
0 0
0 0


[
f1(k)
f2(k)

]
+


1 0
1 0
1 0
0 1
0 1


[
d1(k)
d2(k)

]

→ d1(k) is the noise affecting measures 1, 2 and 3
→ d2(k) is the noise affecting measures 4 and 5

1 Remind the computation for of the residual r(k) = Wy(k) that is
insensitive to x(k).

2 Give the evaluation form of r(k) depending on d(k) and f (k) and note
matrices Wrd = WDd and Wrf = WDf values.

3 After fault occurence at time k = 50, r(60) =

[
−2.09
1.44

]
. Isolate the fault

using a graphical approach.
4 Confirm the validity of the conclusion by computing angles θi
→ Verify the results using Matlab
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Static parity space - isolation

Exercise
Taking into account the evolution of r(k)

another fault leads to the r(k) vectors below

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

r(k)

→ Which fault can be evaluated?

⇒ fault f2 is isolated (since r(k) is oriented along W
[2]
rf )
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Static parity space - isolation

Exercise
Taking into account the evolution of r(k)

another fault leads to the r(k) vectors below

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

Wrf1 (direction due a f1)

Wrf2 (direction due a f2)

r(k)

→ Which fault can be evaluated?
⇒ fault f2 is isolated (since r(k) is oriented along W

[2]
rf )
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Static parity space - recap

Model: y(k)=Cx(k)+Ddd(k)+Df f (k) , y ∈Rp,x ∈Rn,d ∈Rmd,f ∈Rmf

Residual : r(k) = Wy(k) = WCx(k) +WDdd(k) +WDf f (k)

Insensitivity to state: find W s.t. WC = 0 (W ∈ R(p−rank(C))×n)

Sensitivity to faults verified a posteriori:
if column i of WDf non null ⇒ fault fi detectable with r(k)

Perfect robustness to disturbances: find W s.t. W
[
C Dd

]
= 0

Residual the most sensitive to faults and the least sensitive to
disturbances: r̄(k) = vTWy(k) (v obtained using Gantmacher theorem)

Faults isolation: r the most collinear to column i of WDf ⇒ fi isolated

Static parity space approach limitations
→ only sensor faults can be detected and isolated
→ what if W does not exist? (no direct redundancy between measures)

⇒ A solution: use time redundancy between inputs and outputs at different
time instants ⇒ dynamic parity space
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Dynamic parity space - principle

Model

Σk

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bf f (k)

y(k) = Cx(k) + Du(k) + Ddd(k) + Df f (k)

→ x ∈ Rn, y ∈ Rp,u ∈ Rm, d ∈ Rmd , f ∈ Rmf

Idea
use time redundancy between inputs and outputs at different time instants

→ measures y(k) et controls u(k) collected on a time-window

Model on time-window [k − s, k]

Y (k−s,k)=ΦU(s)U(k−s,k)+Qo(s)x(k−s)+ΦD(s)D(k−s,k)+ΦF (s)F (k−s,k)

→ s: taille de la fenêtre temporelle

→ Y (k−s, k) =


y(k−s)

y(k−s + 1)
...

y(k)

, U(k−s, k) =


u(k−s)

u(k−s + 1)
...

u(k)

, D(k, s) = · · ·

→ exercise: find expressions of ΦU(s), Qo(s), ΦD(s) et ΦF (s)
(use recursive approach to determine y(k − s), then y(k − s + 1)...)
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Dynamic parity space - principle

Model

Σk

{
x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bf f (k)

y(k) = Cx(k) + Du(k) + Ddd(k) + Df f (k)

Model on time-window [k − s, k]

Y (k−s,k)=ΦU(s)U(k−s,k)+Qo(s)x(k−s)+ΦD(s)D(k−s,k)+ΦF (s)F (k−s,k)
y(k − s)

y(k − s + 1)
y(k − s + 2)...

y(k)


︸ ︷︷ ︸

Y (k−s,k)

=


C
CA
CA2
...

CAs


︸ ︷︷ ︸
Qo (s)

x(k − s)+


D 0 · · · 0 0
CB D · · · 0 0
CAB CB

. . . 0 0...
...

. . . D 0
CAs−1B CAs−2B · · · CB D


︸ ︷︷ ︸

ΦU (s)


u(k − s)

u(k − s + 1)
u(k − s + 2)...

u(k)


︸ ︷︷ ︸

U(k−s,k)

+


Dd 0 · · · 0 0
CBd Dd · · · 0 0
CABd CBd

. . . 0 0...
...

. . . Dd 0
CAs−1Bd CAs−2Bd · · ·CBd Dd


︸ ︷︷ ︸

ΦD (s)


d(k−s)

d(k−s+1)
d(k−s+2)...

d(k)


︸ ︷︷ ︸

D(k−s,k)

+


Df 0 · · · 0 0
CBf Df · · · 0 0
CABf CBf

. . . 0 0...
...

. . . Df 0
CAs−1Bf CAs−2Bf · · ·CBf Df


︸ ︷︷ ︸

ΦF (s)


f (k−s)

f (k−s+1)
f (k−s+2)...

f (k)


︸ ︷︷ ︸

F (k−s,k)

→ objective: find r(k) = f (Y (k − s, k),U(k − s, k)) insensitive to x(k)
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Dynamic parity space - principle

Model on time-window [k − s, k]
Y (k−s,k)=ΦU(s)U(k−s,k)+Qo(s)x(k−s)+ΦD(s)D(k−s,k)+ΦF (s)F (k−s,k)

Residual obtained by collected measures and controls linear combination

r(k) = W (Y (k−s,k)− ΦU(s)U(k−s,k)) (computation form)

→ takes advantage of redundancy between u and y at different times
⇒ inter-redundancy

Remark

Scalar residuals r̃j(k) can be generated using time redundancy of a single
measure yj(k) ⇒ auto-redundancy

→ r̃j(k) = W̃j

(
Ỹj(k−s,k)− Φ̃ j

U(s)U(k−s,k)
)

Ỹj(k−s,k)=Φ̃ j
U(s)U(k−s,k)+Q̃ j

o (s)x(k−s)+Φ̃ j
D(s)D(k−s,k)+Φ̃ j

F (s)F (k−s,k)

→ Φ̃ j
U(s),Q̃

j
o (s),Φ̃

j
D(s),Φ̃

j
F (s) obtained when replacing C , D ,Dd , Df by their j th line

⇒ simplifies sensor faults isolation
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Dynamic parity space - detection

Model on time-window [k − s, k]

Y(k−s,k)=ΦU(s)U(k−s,k)+Qo(s)x(k−s)+ΦD(s)D(k−s,k)+ΦF(s)F(k−s,k)

Computation form

r(k) = W (Y (k−s,k)− ΦU(s)U(k−s,k))

Evaluation form

r(k) = WQo(s)x(k−s) +WΦD(s)D(k−s,k) +WΦF (s)F (k−s,k)

Insensitivity to state

residual is insensitive to state if W s.t. WQo(s) = 0

existence condition: W exists if p(s + 1) > rank (Qo(s))

→ W ∈ R(p(s+1)−rank(Qo(s)))×p(s+1)

→ W determined using the method presented in static parity space approach
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Dynamic parity space - detection

Evaluation form
r(k) = WQo(s)x(k−s) +WΦD(s)D(k−s,k) +WΦF (s)F (k−s,k)

→ with W s.t. WQo(s) = 0

Sensitivity to faults: a posteriori verification
faults effect on residual evaluated using matrix WrF = WΦF (s)
in disturbance-free case, residual writes

→ r(k)=
[
W

[1]
rF · · · W [mf ]

rF W
[mf +1]
rF · · · W [2mf ]

rF · · · W [smf +1]
rF · · · W [(s+1)mf ]

rF

]


f1(k−s)
· · ·

fmf
(k−s)

f1(k−s+1)
· · ·

fmf
(k−s+1)

· · ·
f1(k)
· · ·

fmf
(k)


if a single constant fault fi (k) occurs, after s samples residual writes:

→ r(k) = W
[i ]
rF fi (k − s) +W

[mf +i ]
rF fi (k − s) + · · ·+W

[smf +i ]
rF fi (k − s)

= (W
[i ]
rF +W

[mf +i ]
rF + · · ·+W

[smf +i ]
rF )fi (k − s)

fi strongly detectable ⇔
∑s

j=0 W
[jmf +i ]
rF ̸= 0

fi weakly detectable ⇔ ∃ q ≤ s s.t.
∑s

j=s−q W
[jmf +i ]
rF ̸= 0
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Dynamic parity space - detection

Evaluation form

r(k) = WQo(s)x(k−s) +WΦD(s)D(k−s,k) +WΦF (s)F (k−s,k)

→ with W s.t. WQo(s) = 0

Robustness to disturbances: verified a posteriori

disturbances effect on residual evaluated using WrD = WΦD(s)

residual insensitive to di if all the columns of W
[i ]
rD ,W

[md+i ]
rD ,· · · ,W [smd+i ]

rD are null

Perfect robustness to disturbances: a priori requirement

choose W s.t. WΦD(s) = 0 ⇒ choisir W s.t. W
[
Qo(s) ΦD(s)

]
= 0

such a matrix W exists if p(s + 1) > rank
([
Qo(s) ΦD(s)

])
→ condition rarely met
⇒ seek for a residual the most sensitive to faults and the least sensitive to

disturbances
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Dynamic parity space - detection

Evaluation form

r(k) = WQo(s)x(k−s) +WΦD(s)D(k−s,k) +WΦF (s)F (k−s,k)

→ with W s.t. WQo(s) = 0

Residual the most sensitive to faults and the least sensitive to disturbances

scalar residual obtained from coordinates of r(k)

→ r̄(k) = vT r(k) = vTWΦD(s)D(k−s,k) + vTWΦF (s)F (k−s,k)

choice of the residual selector

→ v∗ = argmin
v

∥vTWΦD(s)∥22
∥vTWΦF (s)∥22

= argmin
v

vTWΦD(s)Φ
T
D(s)W

T v

vTWΦF (s)ΦT
F (s)W

T v
→ method to dertermine v∗

1 Determine W s.t. WQo(s) = 0
2 Compute eigenvalues λ of pencil (WΦD(s)Φ

T
D(s)W

T,WΦF(s)Φ
T
F (s)W

T)
3 Compute the eigenvector v∗ associated to the smallest eigenvalue λmin
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Dynamic parity space - isolation

Faults isolation (disturbance-free case)
static parity space (reminder)

→ residual evaluation form: r(k) = WDf f (k)

→ single fault fi (k) ⇒ r(k) oriented along i th column of WDf

→ fi (k) varies ⇒ r(k) amplitude changes but not its direction

dynamic parity space

→ residual evaluation form: r(k) = WΦF (s)F (k−s,k) = WrFF (k−s,k)

→ r(k)=
[
W

[1]
rF · · ·W [mf ]

rF W
[mf +1]
rF · · ·W [2mf ]

rF · · ·W [smf +1]
rF · · ·W [(s+1)mf ]

rF

]



f1(k−s).
.
.

fmf
(k−s)

f1(k−s+1).
.
.

fmf
(k−s+1)

.

.

.

f1(k).
.
.

fmf
(k)


→ fi (k) varies ⇒ amplitude and orientation of r(k) vary

(along directions W
[i ]
rF ,W

[i+mf ]
rF ,· · · ,W [i+smf ]

rF )
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Dynamic parity space - isolation

Faults isolation (disturbance-free case)

residual evaluation form: r(k) = WΦF (s)F (k−s,k) = WrFF (k−s,k)

→ r(k)=
[
W

[1]
rF · · ·W [mf ]

rF W
[mf +1]
rF · · ·W [2mf ]

rF · · ·W [smf +1]
rF · · ·W [(s+1)mf ]

rF

]



f1(k−s).
.
.

fmf
(k−s)

f1(k−s+1).
.
.

fmf
(k−s+1)

.

.

.

f1(k).
.
.

fmf
(k)


fi (k) varies ⇒ amplitude and orientation of r(k) vary

→ r(k) = W
[i ]
rF fi (k−s) +W

[i+mf ]
rF fi (k−s+1) + · · ·+W

[i+smf ]
rF fi (k)

if fi (k) is constant, s samples after fault occurence:

→ r(k) = W
[i ]
rF fi (k − s) +W

[i+mf ]
rF fi (k − s) + · · ·+W

[i+smf ]
rF fi (k − s)

= (W
[i ]
rF +W

[i+mf ]
rF + · · ·+W

[i+smf ]
rF )fi (k − s)

under constant fault hypothesis, s samples after fault occurence

if r(k) collinear to W
[i ]
rF +W

[i+mf ]
rF + · · ·+W

[i+smf ]
rF ⇒ fault fi isolated
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Dynamic parity space - window size

Evaluation form

r(k) = WQo(s)x(k−s) +WΦD(s)D(k−s,k) +WΦF (s)F (k−s,k)

Window size s depends on requirements
insensitivity to state

W s.t. WQo(s) = 0 exists if p(s + 1) > rank(Qo(s))

→ iterative choice of s (s increase until condition met ⇒ smin)

insensitivity to disturbances

W s.t. W
[
Qo(s) ΦD(s)

]
= 0 exists if p(s + 1) > rank

([
Qo(s) ΦD(s)

])
→ iterative choice of s

residual the most sensitive to faults and the least sensitive to disturbances

r̄(k) = vT r(k) with v minimizing J(s, v) =
∥vTWΦD(s)∥22
∥vTWΦF (s)∥22

→ criterion J(s, v) decreases when s increases
→ increase s until desired robustness is achieved
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Dynamic parity space - Exercise[
x1(k + 1)
x2(k + 1)

]
=

[
0.8 0.2
0 0.9

][
x1(k)
x2(k)

]
+

[
0
0.1

]
u(k) +

[
1 0
1 0

][
d1(k)
d2(k)

]
+

[
0 0 0
0.1 0 0

]f1(k)f2(k)
f3(k)


[
y1(k)
y2(k)

]
=

[
1 0
0 1

] [
x1(k)
x2(k)

]
+

[
0 1
0 1

][
d1(k)
d2(k)

]
+

[
0 1 0
0 0 1

]f1(k)f2(k)
f3(k)


→ f1(k) is an actuator fault, f2(k) and f3(k) are sensor faults
→ d1(k) is a state disturbance and d2(k) is a measurement noise
1 Is it possible to apply static parity space approach?
2 What is the minimal window size smin s.t. a residual insensitive to x exists?
3 Find W and give the computation form of the residual depending on

collected measures and controls.
4 Give the evaluation form depending on collected faults and disturbances.

Retrieve the sensors and actuator faults directions.

5 3 samples after a single fault, r(k) =

[
0.02
−0.2

]
. Which fault occured?

6 Give expression of scalar residual r̄(k) that is the least sensitive to
disturbances (for s = smin) and evaluate its quality w.r.t. r1(k) and r2(k)

⇒ Verify the results using Matlab
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Dynamic parity space - Exercise

Simulation results in presence of white noise and a constant fault f1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.08
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0
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0.08

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−12

−10

−8

−6

−4

−2

0

2

4
x 10

−3

Measured output

Residual r insensitive to state

Residual r̄ insensitive to disturbances

Mean of residual r̄ on last 10 samples

y

t(s)

t(s)

t(s)

t(s)

y1(t)
y2(t)

r1(t)
r2(t)

r

r̄
r̄ m

e
a
n
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Sampled data models

Reminder on sampled data systems

Bloc diagram involving D/A converters for control and FDI purposes

ZOH

DAC ADC

ykuk

sampled data system

actuator process sensor
u(t) y(t)

actuators + plant + sensors ≡ Σ modeled by state space representation

→ Σ:

{
ẋ(t) = Ãx(t) + B̃u(t)

y(t) = C̃x(t) + D̃u(t)

actuators + process + sensors + DAC + ADC ≡ Σk

→ Σk :

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

with A = eÃTe , B =

∫ Te

0

eÃ(Te−α)B̃dα, C = C̃ , D = D̃
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Sampled data models

Reminder on sampled data systems

Solution of state space equations of the continuous-time model Σ

x(t) = eÃtx(0) +

∫ t

0

eÃ(t−τ)B̃u(τ)dτ

State value at time t = kTe and t = (k + 1)Te is

x(kTe) = eÃkTe x(0) +

∫ kTe

0

eÃ(kTe−τ)B̃u(τ)dτ

x((k + 1)Te) = eÃ(k+1)Te x(0) +

∫ (k+1)Te

0

eÃ((k+1)Te−τ)B̃u(τ)dτ

= eÃTe

[
eÃkTe x(0) +

∫ (k+1)Te

0

eÃ(kTe−τ)B̃u(τ)dτ

]

= eÃTe

eÃkTe x(0) +

∫ kTe

0

eÃ(kTe−τ)B̃u(τ)dτ︸ ︷︷ ︸
x(kTe )

+

∫ (k+1)Te

kTe

eÃ(kTe−τ)B̃u(τ)dτ
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Sampled data models

Reminder on sampled data systems

State value at time t = (k + 1)Te is

x((k + 1)Te) = eÃTe

[
x(kTe) +

∫ (k+1)Te

kTe

eÃ(kTe−τ)B̃u(τ)dτ

]
With change of variables α = τ − kTe

x((k + 1)Te) = eÃTe

[
x(kTe) +

∫ Te

0

e−ÃαB̃u(α+ kTe)dα

]
Because of the zero-order hold, u(kTe + α) = u(kTe) if 0 < α < Te

x((k + 1)Te) = eÃTe

[
x(kTe) +

∫ Te

0

e−ÃαB̃u(kTe)dα

]
As u(kTe) does not depend on α

x((k + 1)Te)︸ ︷︷ ︸
xk+1

= eÃTe︸︷︷︸
A

x(kTe)︸ ︷︷ ︸
xk

+

∫ Te

0

eÃ(Te−α)B̃dα︸ ︷︷ ︸
B

u(kTe)︸ ︷︷ ︸
uk
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