

## English Course Catalogue - Template

| Discipline               | Chemistry                                                                                                                                       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Title of the course      | Solid State Physics                                                                                                                             |
| Code                     |                                                                                                                                                 |
| Duration and             | 11 weeks (spring semester)                                                                                                                      |
| Date start               | March - end of May                                                                                                                              |
| Date end                 |                                                                                                                                                 |
|                          |                                                                                                                                                 |
| Course coordinators and  | Cedric CRESPOS                                                                                                                                  |
| contact details          | <u>cedric.crespos@u-bordeaux.fr</u>                                                                                                             |
|                          | Alexandre BARON                                                                                                                                 |
|                          | <u>alexandre.baron@u-bordeaux.tr</u>                                                                                                            |
| Other contact person     | corinne JALIBERT                                                                                                                                |
|                          |                                                                                                                                                 |
| Mode of delivery         | Learning mode = in-class 35 contact hours                                                                                                       |
|                          | Assessment procedure = final exam + project evaluation                                                                                          |
|                          |                                                                                                                                                 |
| Level                    | Master                                                                                                                                          |
|                          |                                                                                                                                                 |
| ECTS credit points       |                                                                                                                                                 |
|                          | 120 nours – 41 contact nours (35 lectures and tutorials, 6 practicals                                                                           |
|                          | on computer); oz hours sen-study; 5 hours + project for assessment.                                                                             |
| Lanauaae                 | English                                                                                                                                         |
|                          |                                                                                                                                                 |
| Description <sup>1</sup> | The objective of this course is to provide the students with the basics                                                                         |
| _                        | of solid-state physics. Prerequisites of statistical physics and quantum                                                                        |
|                          | theory are required as well as basic concepts in optics. Fundamental                                                                            |
|                          | examples                                                                                                                                        |
|                          | A first part of the course is devoted to the main models of electronic                                                                          |
|                          | structure in periodic systems are exposed (Fermi free electron gas,                                                                             |
|                          | nearly free electrons in a perturbation theory) and illustrated by simple                                                                       |
|                          | benchmark examples. An introduction to the physics of lattice                                                                                   |
|                          | dynamics is also proposed in a last chapter devoted to the theory of                                                                            |
|                          | In a second part, the optical properties of the solid state are                                                                                 |
|                          | presented.                                                                                                                                      |
|                          |                                                                                                                                                 |
| Content                  |                                                                                                                                                 |
|                          | Lectures:                                                                                                                                       |
|                          | • Elementary classical and quantum aspects of the free electron                                                                                 |
|                          | theory of metals.                                                                                                                               |
|                          | <ul> <li>Electrons in a weak periodic potential: Bloch's Theorem,</li> <li>porturbation theory, applied to periodic potentials have:</li> </ul> |
|                          | structure. Fermi surfaces and Brillouin zones, pearly free                                                                                      |
|                          | electrons model.                                                                                                                                |
|                          | General properties of semiconductors.                                                                                                           |
|                          | • The Tight-Binding model, a chemist's view of bonding in solids.                                                                               |

## Université BORDEAUX

## English Course Catalogue - Template

|                       | <ul> <li>Phonons and lattice vibrations: classical and quantum theories of the Harmonic crystals, normal modes, elementary theory of the phonon dispersion relation, electron-phonon interaction.</li> <li>Electromagnetism in matter: Maxwell's equations, polarization, dielectric constant, the propagation equation, reflectance, transmittance and absorption, dielectric, metals and semiconductors, blackbody radiation</li> <li>Optical properties of metals</li> <li>Optical properties of nanoparticles</li> <li>Photonic applications: sensors, LED's, quantum dots, solid state lasers, spectroscopy, photonic crystals</li> <li>Practicals:</li> <li>Computational procedure for the study of periodic systems</li> <li>Energy minimization and ground-state properties calculations.</li> <li>Structural optimization, Lattice relaxation.</li> <li>Calculation of density of states and bands diagrams.</li> </ul> |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods               | Lectures, tutorials on computers, project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Assessment procedures | Type of assessment / first session: written exam (60% weight of<br>overall mark) at the end of the semester, project evaluation (40%<br>weight of overall mark).In case of failures/second session: written exam (60% weight of<br>overall mark) at the end of the semester, project evaluation (recall of<br>the first session mark).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Prerequisites         | Prerequisites: Basics in quantum mechanics, statistical physics, notions of geometrical optics<br>(Undergraduate level)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other information     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |