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Lattice vibrations

.

From the study of the atoms vibrations within the solid (lattice vibrations), the objective

of this chapter is to deal with the concept of Phonons (quantization of vibrational modes)
and the thermal properties of solids.

1D lattice model

For simplicity we consider, first, a 1D crystal lattice and assume that the forces between

the atoms in this lattice are proportional to relative displacements from the equilibrium
positions (Hooke’s law).
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This is known as the harmonic approximation, which holds well provided that the

displacements are small. U, is the displacement of an atom from its equilibrium position
X,=na.
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One might think about the atoms in the lattice as interconnected by elastic springs.
Therefore, the force exerted on n-the atom in the lattice is given by:

F=Cu, -u)+Cu, —u,)

n+l

where C is the interatomic force (elastic) constant.

Applying Newton’s second law to the motion of the n-th atom we obtain:
2
du,

M
dr’

=F,=C(u,, -u)+Cu,, -u)=-CQu,-u,, -u,,)

n+l

M is the mass of the atom. We neglect here the interaction of the n-th atom with all but
its nearest neighbors
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We end with N coupled differential equations, which should be solved simultaneously
(N being the total number of atoms in the lattice).

Now let us attempt a solution of the form: [ u = Ae' (@) ]

where x,, 1s the equilibrium position of the n-th atom so that x,=na.
U, i1s a traveling wave, in which all the atoms oscillate with the same frequency w ,
same amplitude A and same wave-vector q.
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[un = Ae ]

M(_wZ)Aeiqnae—iwt — _C{ZAeiqnae—iwt _ Aeiq(n+1)ae—iwt _ Aeiq(n—l)ae—iwt}
Mw? = C{2 — '1* — ¢~1a%}
Mw? = 2C{1 — cos qa}

a
After some maths, Newton’s second law becomes: Mw? = 4C sin q7
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We find therefore the dispersion relation for the frequency: | ¢ =  |—

M

. a
S11 q—

Reducing to the first Brillouin zone.

Un (q + %n) = Aeilqna-wt)izmn — goi(qna-wt)
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The frequency is symmetric with respect to the
sign change in q.

w/(4c/M)"”

A mode with positive g corresponds to the wave
traveling in the lattice from the left to right and a
mode with a negative g corresponds to the wave
traveling from the right to the left.

m/a

O

At the boundaries of the Brillouin zone g=#m/a the solution represents a standing

wave: u = A(-1)"e” atoms oscillate in the opposite phases depending on whether
n is even or odd.

Ceci est une goutte d'huile silicone

qui rebondit sur un bain vibré verticalement.

https://www.youtube.com/watch?v=QCiTD 9IE 0



https://www.youtube.com/watch?v=QCiTD_9lE_0
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Long wave-lenght limit: frequency of vibration is
proportional to the wavevector = velocity is
independent of frequency.

w= ] ga
Mq

vV = @ _ —a  This is the velocity of sound for the one dimensional lattice
q

w/(4c/M)"”




Lattice vibrations

\‘

Diatomic 1D lattice model

Now we consider a one-dimensional lattice with two non-equivalent atoms in a unit cell.
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In the present case because we have two different kinds of atoms, we should write two
equations of motion:
d’u
n — — — —
Ml dt2 - C(zun un+1 un—l)




Lattice vibrations

“

Diatomic 1D lattice model

Now we consider a one-dimensional lattice with two non-equivalent atoms in a unit cell.
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Solution in the form of traveling mode for the two atoms:
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M A,0? = C {2. A, — A, plaa _ A, e—iqa} Sous forme matricielle :

2 — {24 — A plaa _ A p—iqa
MpA;w C{24, — Aqe Aje™'a%} 2C — Myw* —2C cosqa (Al), S
—2Ccosqa 2C — M,w?) \4,

Then secular determinant to be solved :

“26‘ — Myw? —2C cos qal

=0
—2Ccosqa 2C — M,w?*

2 different solutions corresponding to 2 different dispersion curves:

2 . 5
W= C 1+1 L C 1+1 _4sin” ga
Ml M2 Ml M2 M1M2
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The distinction between the acoustic and optical
Optical branches of lattice vibrations can be seen most clearly

/’\ by comparing them at g=0 (infinite wavelength).

5 :
Acoustic ( 2C =2C (Al) —0

_n/2a n/2a Then [ A1= A2 J

0
q

For the acoustic branch g=0, w=0 and A;=A,. So in this limit the two atoms in the cell
have the same amplitude and the phase.

A Acoustic
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. For the optical branch, the two atoms move in out of
Optical phase. The frequency of these vibrations lies in

/\ infrared region which is the reason for referring to

this branch as optical.

3 Acoustic
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Extension to 3D lattice

To avoid mathematical details we shall present only a qualitative discussion. First, the

solution of this equation in three dimensions can be represented in terms of normal
modes:

[ u= Aei(qr—wt) ]

v’ wave vector q = wavelength and direction of propagation
v’ vector A = amplitude as well as direction of vibration of the atoms

10
The wave is defined as longitudinal if A is parallel to g ‘ Lo | ! LO
And transverse when A is perpendicular to q. 8§ —7T0 - >
1, 6] |
If there are s atoms per cell, there are 3s - y 4 L'/
dispersion curves = 3 branches are acoustic, 3 —]
and the remaining (3s —3) are optical. 2 —a il TA-
0 niy © [100]
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So far we discussed a classical approach to the lattice vibrations, but as we know from
quantum mechanics the energy levels of the harmonic oscillator are quantized.

Energy levels of lattice vibrations are quantized.

[ Phonon = quantum of lattice VibrationJ

Energy of normal mode of vibration: FE = (n+%)hw :

7/2hw

Total energy = sum over all phonons modes < aher

3/2h@

E = ZEQP = Z (I’lqp + I/Z)hwp (Q) 12h@
Qv qp

where 7_ is the « occupation number » (number of phonons of energy 7))
of the normal mode of vibration p characterized by the wave vector q.



