Exercises about the geometrical study of ODE's (3) : autonomous equations

1 Use of phase lines and barriers to find the shape of the solutions

We consider the differential equation

$$
y^{\prime}(x)=f(y)(x)
$$

with

$$
\begin{align*}
& f(y)=y(y-1) \tag{1}\\
& f(y)=y^{3}-1 \tag{2}\\
& f(y)=1-y^{3} \tag{3}
\end{align*}
$$

1. Determine the phase lines for the differential equations corresponding to (1), (2) and (3).
2. In the case of (2), prove that the solution for the initial condition $y(0)=2$ explodes, using the function $e^{x}+1$ as a subsolution on $[0,+\infty[$.
3. In the case of (3), using a supersolution and a subsolution inspired by the last question, prove that all solutions $y(x)$ with initial conditions between 0 and 2 tend to 1 when x tends to ∞.

2 Limits of phase lines

We consider the differential equations $x^{\prime}(t)=x(t)$ and $x^{\prime}(t)=x^{3}(t)$. Check that they have the same phase line, but that the maximal solutions of the first one are defined on \mathbb{R} while the solutions of the second one explode (at the exception of the zero solution).

