Exercises about the geometrical study of ODE's (2)

1 Non-explosion of a solution

We consider the differential equation

$$
y^{\prime}=y^{2}-x
$$

1. We denote $V_{x, y}=y^{2}-x$.

$$
\begin{aligned}
V_{x, y} & =0 \Leftrightarrow y^{2}=x \Leftrightarrow x \geq 0 \text { and }|y|=\sqrt{x}, \\
V_{x, y} & \leq 0 \Leftrightarrow y^{2} \leq x \Leftrightarrow x \geq 0 \text { and }|y| \leq \sqrt{x}, \\
V_{x, y} & \geq 0 \Leftrightarrow y^{2} \geq x \Leftrightarrow(x \geq 0 \text { and }|y| \geq \sqrt{x}) \text { or } x \leq 0 .
\end{aligned}
$$

2. Let $M_{0}=\left(x_{0}, y_{0}\right)$ be a point where the slope of the tangent field is negative, and u the solution satisfying $u\left(x_{0}\right)=y_{0}$. Then following the tangent field, the graph of u will always remain in the part of the plane where the tangent slope is negative, which is bounded for bounded values of x. Therefore, u can not explode.

2 A remark about barriers

We consider a first order ODE written under the following form :

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

Let g be a supersolution, and u a solution of differential equation (1). We assume that there exists x_{1} such that $u\left(x_{1}\right)=g\left(x_{1}\right)$.

We make a Taylor series expansion of $g(x)-u(x)$ for x close to x_{1} :
$(g-u)(x)=(g-u)\left(x_{1}\right)+\left(x-x_{1}\right)(g-u)^{\prime}\left(x_{1}\right)+O\left(\left(x-x_{1}\right)^{2}\right)=\left(x-x_{1}\right)(g-u)^{\prime}\left(x_{1}\right)+O\left(\left(x-x_{1}\right)^{2}\right)$
Therefore, if x is close enough to x_{1}, then the sign of $(g-u)(x)$ is the same as the sign of $\left(x-x_{1}\right)(g-$ $u)^{\prime}\left(x_{1}\right)$. Now we remark that

$$
\left(x-x_{1}\right)(g-u)^{\prime}\left(x_{1}\right)=\left(x-x_{1}\right)\left(g^{\prime}\left(x_{1}\right)-f\left(x_{1}, u\left(x_{1}\right)\right)=\left(x-x_{1}\right)\left(g^{\prime}\left(x_{1}\right)-f\left(x_{1}, g\left(x_{1}\right)\right)\right.\right.
$$

Because $g^{\prime}\left(x_{1}\right)-f\left(x_{1}, g\left(x_{1}\right)>0\right.$ we conclude $(g-u)(x)$ has the same sign as $x-x_{1}$.

3 Barriers and limit of solutions when x tend to $+\infty$

We consider the differential equation

$$
\begin{equation*}
y^{\prime}=-y-\frac{y}{x} \tag{2}
\end{equation*}
$$

for $x \in] 0,+\infty[$.

1. We denote $f(x, y)=-y-\frac{y}{x}$.

$$
f(x, g(x))=-g(x)\left(1+\frac{1}{x}\right)<-g(x)=g^{\prime}(x) \text { if } g \text { is positive. }
$$

2. Similarly

$$
f(x, g(x))=-g(x)\left(1+\frac{1}{x}\right)>-g(x)=g^{\prime}(x) \text { if } g \text { is negative. }
$$

3. The solutions of the differential equation $y^{\prime}=-y$ can all be written under the form $y(x)=$ $y_{0} e^{-\left(x-x_{0}\right)}$, with $y_{0}=y\left(x_{0}\right)$.
4. We define by f the maximal solution of the differential equation (2), for the initial condition $f\left(x_{0}\right)=y_{0}$.
We consider $y_{1}(x)=-\left|y_{0}\right| e^{-x}$ and $y_{2}(x)=\left|y_{0}\right| e^{-x}$. The function y_{1} are both barriers for the differential equation (2) : y_{1} is a subsolution, and y_{2} a supersolution. Due to a theorem in the course notes, we deduce that for all x on which f is defined, $y_{1}(x) \leq f(x) \leq y_{2}(x)$. Therefore, f does not explode on a finite interval. Consequently, f is defined on $] x_{0},+\infty\left[\right.$. As y_{1} and y_{2} both tend to 0 when x tends to $+\infty$, we conclude that f also tends to 0 when x tends to $+\infty$.
