Exercises about the geometrical study of ODE's (2)

1 Non-explosion of a solution

We consider the differential equation

$$
y^{\prime}=y^{2}-x
$$

1. Determine the three regions of the (x, y)-plane where the slope of the tangent field is zero, positive, negative.
2. Let $M_{0}=\left(x_{0}, y_{0}\right)$ be a point where the slope of the tangent field is negative, and u the solution satisfying the initial $u\left(x_{0}\right)=y_{0}$. Prove that u does not explode (that is, does not tend to infinity when x tends to a finite value).

2 A remark about barriers

We consider a first order ODE written under the following form :

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

Let g be a supersolution, and u a solution of differential equation (1). We assume that there exists x_{1} such that $u\left(x_{1}\right)=g\left(x_{1}\right)$.

Using a Taylor series expansion of $g-u$, prove that

- if $x<x_{1}$ and is enough close to x_{1}, then $g(x)<u(x)$.
- if $x>x_{1}$ and is enough close to x_{1}, then $g(x)>u(x)$.

The same kind of results can be proven for a subsolution.

3 Barriers and limit of solutions when x tend to $+\infty$

We consider the differential equation

$$
\begin{equation*}
y^{\prime}=-y-\frac{y}{x} \tag{2}
\end{equation*}
$$

for $x \in] 0,+\infty[$. We notice that the zero function is solution of this ODE.

1. Prove that, if g is a positive solution for the differential equation $y^{\prime}=-y$, then the graph of g is a barrier for the differential equation (2).
2. Similarly, prove that, if h is a negative solution for the differential equation $y^{\prime}=-y$, then the graph of h is a barrier for (2).
3. What are the solutions of the differential equation $y^{\prime}=-y$?
4. We define by f the maximal solution of the differential equation (2), for the initial condition $f\left(x_{0}\right)=y_{0}$. Using the first questions, prove that f is defined (at least) on $\left[x_{0},+\infty[\right.$ and that $f(x) \rightarrow 0$ when $x \rightarrow+\infty$.
