Geometrical study of ODE's

(These notes are strongly inspired by the course of Frédéric Le Roux, at University Paris 11)

We consider a first order ODE written under the following form :

$$
y^{\prime}=f(x, y)
$$

We aim to study geometrically the solutions of this ODE.
We define on every point (x, y) of the plane (at least, where the function f is defined), the vector $V_{x, y}$ whose slope is $f(x, y)$.

Proposition 0.1. We denote u a solution of the differential equation $y^{\prime}=f(x, y)$. Then the graph of u is tangent on each of its points (x, y) to the vector $V_{x, y}$.

With this property one can get an idea of the behavior of the solutions without explicitly solving the differential equation.

For instance, on Fig. 1 are plotted some vectors $V_{x, y}$ for $f(x, y)=-0.5 y$. On Fig 2 are plotted some vectors $V_{x, y}$ for $f(x, y)=(2-\cos (x)) y-0.5 y^{2}-1$, with the graph of a solution.

Figure 1 - Example of a tangent field, for $f(x, y)=-0.5 y$

Figure 2 - Example of a tangent field for $f(x, y)=(2-\cos (x)) y-0.5 y^{2}-1$, with the graph of a solution.

