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Fungal biofactories are well established in bioprocess industries.

They have been used for the production of essential

biomolecules in chemical, food, and pharmaceutical industries.

The high growth rate and the ability of fungal cells to hydrolyze

wide range of complex and economic substrates make them

among the superior microorganism for large scale production. In

addition, they have high capacity for product excretion in high

concentration which reduces the overall throughput of the

production process and reduces the downstream cost as well.

However, growth morphology in submerged culture is one of the

greatest challenges inbioprocess industries.The samestrain can

exhibit extremely different morphologies with any minor

alteration in cultivation conditions or medium composition, and

thus affect the product yield. In this review, we present the fungal

morphology in a complete and full-scale approach from spore

induction in hyphal cells up to complete biopellet formation.

Addresses
1 Institute of Bioproduct Development (IBD), Universiti Teknologi

Malaysia (UTM), Skudai, Johor, Malaysia

2 School of Chemical and Energy Engineering, Faculty of Engineering,

Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
3City of Scientific Research and Technology Applications (SRTA), New

Burg Al Arab, Alexandria, Egypt

Corresponding author: El Enshasy, Hesham A (henshasy@ibd.utm.my)

Current Opinion in Chemical Engineering 2022, 35:100729

This review comes from a themed issue on Frontiers in chemical

engineering; chemical product design – II

Edited by Rafiqul Gani, Lei Zhang and Chrysanthos Gounaris

For complete overview of the section, please refer to the article col-

lection, “Frontiers in Chemical Engineering; Chemical Product

Design – II”

Available online 4th September 2021

https://doi.org/10.1016/j.coche.2021.100729

2211-3398/ã 2021 Elsevier Ltd. All rights reserved.

Introduction
Filamentous microorganisms have a history in biotech-

nology industries for the production of many essential

metabolites for pharmaceuticals, cosmetics, food, feed,

and chemical industries [1��,2,3]. Fungi are character-

ized by their high capacity for the efficient production of

a wide range of hydrolytic enzymes by converting com-

plex materials to metabolizable low molecular weight

compounds such as fermentable sugars, amino acids, and
www.sciencedirect.com 
low molecular weight compounds [1��]. Nowadays, sev-

eral fungal strains belonging to Aspergillus and Penicillium
species are considered as GRAS (Generally Regarded As

Safe) according to the Food and Drug Administration

(FDA). Therefore, they are highly recognized in bio-

technology industries as major biofactories for different

types of biological products [4–6]. However, unlike

unicellular microorganisms, fungi are characterized by

their highly complex morphological features in sub-

merged cultures. The growth morphology can range

from fully dispersed mycelium to compact pellet struc-

ture. Minor changes in fungal morphology leads to

significant chenges in production yield with an impact

on mass transfer and mixing in the bioreactor [7,8,9�,10�].
To achieve maximal production of the targeted metab-

olites, specific morphological structure should be main-

tained. Table 1 provides a comprehensive overview

about some industrial fungal products preferred mor-

phology and major production companies. However, it is

not easy to achieve the desired morphology as it can be

affected by many variables related to the type of strain

used, cultivation conditions, and medium composition.

Recent research reported also that fungal morphology

can be genetically manipulated to optimized the desired

morphological structure [11,12].

In general, controlling the morphological structure in

submerged cultivation system is considered one of the

main industrial challenges in biotechnology industries,

especially during scaling up processes. Growth morphol-

ogy not only affect the mixing characteristics and control-

ling of the process, but also reflects directly on overall

volumetric and specific product yields. Therefore, for an

efficient production of fungal metabolites, controlling the

growth morphology became of ultimate importance. This

was also driven by industrial demand to improve the

overall process performance for both upstream and down-

stream. Fungal morphology in submerged culture can be

in filamentous growth, pelleted growth, or a mixture of

both shapes. However, the rheological properties of fer-

mentation broth are highly linked to fungal growth mor-

phology [33]. In filamentous growth, cells are exposed to

oxygen and nutrients for better mixing, but the main

drawback is the increase in culture viscosity due to the

non-Newtonian fluid characteristics [34]. On the other

hand, pelleted growth can facilitate the bioprocess con-

trol. However, besides the advantages of pelleted growth

in upstream process, it helps in the reduction of down-

stream cost and pellets can be easily separated. On the

other hand, pelleted growth has also disadvantages
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Table 1

Fungal biofactories for the production of different metabolites in fermentationindustries (modified from Refs. [10�,11,13�,14])

Fungal

biofactory

Metabolite/(preferred morphology) Applications/

Industry

Manufacturing companies

Acremonium

chrysogenum

Antibiotics: Cephalosporins (Filamentous/

fragmented hyphal structure [15]

Pharmaceutical Novartis (Switzerland), Lupin Ltd. (India)

Aspergillus

awamori

Enzymes: Amylase, Glucoamylase (Filamentous

growth [16]), (Small pellet with mycelial network

[17])

Food Novozymes A/S (Denmark)

Aspergillus

niger

Organic acids: Citric acid (Small pellet not exceed

2.2 mm [4,18] Food, Feed,

Pharmaceutical

industries

DSM (The Netherlands), Novozymes A/S (Denmark),

Zymergen (USA), COFCO, RZBC Group (China), Cargill

(USA), Christian Hansen (Denmark), Mitsubishi Foods Co.

Ltd. (Japan). Jiangsu Boli Bioproducts Co., Ltd (China),

BASF (Germany)

Enzymes: Glucose oxidase (Small pellet not

exceed 0.4 mm [19], Phytases, Pectinase,

Proteases, Glucoamylase, Chymosin)

Aspergillus

oryzae

Organic acids: Kojic acid (Pelleted growth [20]).

Malic acid (small hairy pellet [21,22]). Lactic acid

(Pelleted growth [23] Food, Feed

Novozymes A/S (Denmark), Amano Enzymes Inc. (Japan),

Gekkeikan Sake (Ltd. (Japan), Jiangsu Boli Bioproducts

Co., Ltd (China)Enzymes: Amylase (filamentous growth [24]),

Lipases, Invertase, Protease, Laccase

Aspergillus

terreus

Organic acids: Itaconic acid (hairy less dense pellet

(clump structure, of 0.4�0.5 mm [25]) Food,

Pharmaceutical

Alpha Chemika (India), Chengdu Jinkai Biology Engineering

Co., Ltd. (China), Pfizer (USA), Merck (USA)Secondary metabolites: Iovastatin (pellet of 2.5 mm

diameter [26]

Blakeslea

trispora

Vitamins, Astaxanthin b-carotene: (Filamentous

growth with long hyphae [27]

Food,

Pharmaceutical

DSM (The Netherlands), Universal Foods Corp. (Japan),

Pharmacia & Upjohn (USA), Lycored (Israel)

Cordyceps

militaris

Cordycepin (Filamentous and small pellet) Food,

Pharmaceutical

Zhenjiang Wanfeng Medicines Group Co. Ltd. (China),

Bioalpha (Malaysia)Polysaccharides

Fusidium

coccineum

Antibiotic: Fusidic acid Pharmaceutical Leo Pharma A/S (Denmark)

Ganoderma

lucidum

Polysaccharides, biomass (small pellet) Food,

pharmaceutical

Lentinus

edodes

Eritadenine (filamentous [28]) Pharmaceutical New product

Penicillium

chrysogenum

Antibiotic: Penicillin (small loose pellet structure

with low mycelia density [29,30]

Pharmaceutical DSMZ (The Netherlands), Merck (USA), Pharmacia &

Upjohn (USA)

Rhizopus

oryzae

Organic acid: Lactic acid, Fumaric acid (Small

pellet 2.0�2.5 mm [31])

Chemical, Food,

Pharmaceutical

Corbion (The Netherlands)

Tolypocladium

inflatum

Antibiotic: Cyclosporin A (small pellet less than

0.25 mm, [32])

Pharmaceutical Novartis (Switzerland)
related to mass transfer limitation inside the pellet struc-

ture, and only outer layers exposed to oxygen and nutrient

remain viable and active [35]. The aim of this review is to

provide a comprehensive overview about all the steps

affecting the fungal morphology development from spore

induction to the development of fungal macromorpholo-

gical development as shown in Figure 1

From fungal spore induction to spore
germination
Spores are considered as the dormant stage in microorganisms

life cycle. They are either produced naturally or under

induction of different biotic or abiotic stresses. Generally,

theyareproducedaspartoftheirasexualandsexual lifecycles.

Besides the genetic regulations of sporulation process, envi-

ronmental conditions such as light, pH, temperature, mycelial

injury, type and concentration of carbon and nitrogen sources,

C/Nratio,humidity,oxygen,andosmoticstresscancontribute

largely to spore induction. In addition, some exogenous

chemical addition such as calcium, volatile organic
Current Opinion in Chemical Engineering 2022, 35:100729 
compounds, and cyclic adenosine monophosphate (cAMP)

can play regulatory role in sporulation process [36]. However,

light (wavelength and exposure time) is usually considered as

one of the key factors to induce sporulation in species such as

Trichoderma, and to a lesser extent for other fungal strains

belonging to the species of Aspergillus, and Penicillium [36–39].

However, the lightstimulatoryeffectonspore inductionisage

and metabolic stage dependent of the exposed hyphae [40].

Lightcan also mediate itseffect through theregulatoryVelvet

proteins which play essential roles in sporulation and metab-

olite production as well [41,42].

Gnerally, the factors affecting sporulation are belived to

be strain dependent. Moreover, these factors not only

stimulate hyphal differentiation for sporangiophone and

spore formation, but also influence the quality of devel-

oped spores in terms of size and germinability. Recent

study reported that the spore size distribution and spore

resistance can be affected by temperature in Penicillium
roqueforti [43]. It has been also reported that the heat
www.sciencedirect.com
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Figure 1

(a)

(b)

From spore induction to spore germination

From spore to mycelium/biopellet formation

I. Coagulative agglomeration

II. Non-coagulative agglomeration

Current Opinion in Chemical Engineering

Different stages of morphological development of sporulating fungi. (a) From spore induction to spore germination, (b) from spore to the

development of mycelium/biopellet formation (modified from Veiter et al. [10�]).
resistance of Paecilomyces variotii spores is highly depen-

dent on size, shape, and size distribution in spore popu-

lation [44]. In addition, spore structure and morphology

play significant role in the future growth of fungus in

submerged culture system.

Fungal spore structure
Spores are characterized by their high tolerance to the

environmental condition compared to hyphae/vegetative

cells. Therefore, they are the preferred structures for cell

banking and long-term preservation. The robustness of

spore structure is based on their high dense and compact

structure with high protection by different surrounding

layers of special structures. The spore internal features

are characterized by the accumulation of different ingre-

dients which support spore protection and act as preser-

vatives during dormancy [45�]. These include the

following:

- Trehalose: to protect against dehydration, oxidative-

stress, and thermal-stress, and cell wall stability

-

www.sciencedirect.com 
Heat stress proteins (HSPs): To prevent desiccation,

and provide protection against pH stress, thermal stress,

and osmotic stress.

- Mannitol: To provide protection against high tempera-

ture and oxidative stress.

- Dehydrins: To protect against spore dehydration, ther-

mal-stresses, osmotic-stresses, and pH-stresses.

The outer layer of most fungal asexual spores is made of

polysaccharides (chitin and combination of a-glucans and

b-glucans), and is surrounded by a rodlet layer of complex

structure composed of a phenolic compound (melanin)

and hydrophobic protein (hydrophin).

Melanin is a dark colored protein complex which confers

the black or dark color of fungal spores [46,47]. Fungal

melanin plays an essential role in the protection of spore

against environmental stresses including physical stress

(osmotic stress, photo-inactivation, and radiation), and

chemical stresses (pH, heavy metals, and free radicals).

Therefore, it acts as the first defense layer against harsh

environmental conditions [48–50]. Beside melanin, a

special group of surface-active amphiphilic protein

(hydrophobins), a protein structured layer composed of
Current Opinion in Chemical Engineering 2022, 35:100729
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special molecular arrangement of a combination of neu-

tral, hydrophilic, and hydrophobic amino acids are also

exist in outer layer of spore [51]. This protein is necessary

for conidial hydrophobicity, increasing wet-resistance,

and thus it protects spores during dormancy. Hydrophins

also support the resistance against environmental stresses

such as temperature as well as physical damage [52,53]. In

addition to their roles in spore protection, they have also

applications in food industries such as foam enhancer,

emulsifier, and biosurfactant [54,55]. However, hydro-

phobins play critical role in fungal morphology in sub-

merged culture system as they govern the spore surface

tension and spore-spore aggregation.

Factors affecting spore germination (swelling
and germ tube formation)
Different internal and external factors are contributing to

the kinetics of spore swelling, germination, and germ tube

emergence, and elongation. Initially, spore moves from

dormant to non-dormant phase. Spore dormancy can be

classified into two types: endogenous (constitutive or

strain dependent) and exogenous (superficial or environ-

mental dependent). The constitutive dormancy is gene

regulated and can be broken by exogenous addition of

activators of cAMP pathway. It was reported that the

spore germination and germ tube formation process are

governed by a mitogen-activated protein kinase (MAP

kinase) mpkA and protein kinase C pkcA genes in Asper-
gillus nidulans [56]. On the other hand, the exogenous

dormancy is initiated by either physical (heat or radiation)

or chemical induction. Recent data reported that non-

thermal plasma can initiate germination in Aspergillus
oryzae spores by increasing intracellular calcium levels,

and activation of mpkA, and other genes involving in

germination process [57]. The optimal conditions (envi-

ronmental and nutritional signals) for spore swelling

initiation could be different from those optimum for

microbial growth [58,59].

In general, the process of spore germination involves

three main steps: (1) spore swelling, (2) germ tube devel-

opment, and (3) germ tube elongation. The swelling step

is initiated by water uptake and associated by a volume

increase up to threefold with isotropic growth.

After reaching a critical size, growth is switched from

isotropic to polarized growth for germ tube formation

under the control of nutrient availability [58,59]. Recent

study reported that the minimal medium for spore ger-

mination of Aspergillus niger should include a mixed

nutrients of suitable carbon source for induction with

either inorganic nitrogen or magnesium sulphate [60�].

The rate of spore swelling can be increased in the

presence of glucose under acidic environment which

can help to increase the water uptake under the control

of osmotic water permeability coefficient regulatory
Current Opinion in Chemical Engineering 2022, 35:100729 
genes or aquaporin-encoding gene [61]. During this fast

growth phase, many metabolic pathways are switched on

such as those related to carbohydrate metabolism and

protein synthesis. It is also noteworthy to mention that

the spore swelling rate and subsequent metabolic activi-

ties of spores of the same age exhibited intrapopulation

variation which is mainly related to the spore age and

outer layer structure [62].

The swellingphase is characterized by high growth rate and

usually following exponential mode, while the germ tube

elongation (polarized growth) is following linear growth

rate. Extensive branching facilitates the faster growth rate

and can reach exponential growth mode. It has been

reported also that several genes related to cell wall synthesis

and cytoskeleton structure are upregulated during the

switch from isotropic to polarized growth phase [63,64].

Monitoring of spore germination and
branching
Several techniques have been developed for germination

process monitoring. Most of research have been carried

out to investigate individual spore using morphological

approach. This was achieved by using different types of

microscopy (light, fluorescence, confocal laser, and elec-

tron microscope) combined with image analysis system

[65]. In addition, atomic force microscopy (AFM), and

force spectroscopy (FS) have been applied to study the

germination of A. nidulans spores [66]. This real time

imaging method allowed to monitor the growth under the

effect of different physical and chemical stimulants [67].

Florescence staining methods using acridine orange (AO)

to differentiate between germinated and non-germinated

spores have been also applied. This based on that the

DNA rich spores (which considered as non-germinated),

will be take green fluorescence while the RNA rich spores

(physiologically active and germinated) will be stained

with red color [9�]. Spore staining using Alamar blue

(resazurin, 7-hydroxy-3H-phenoxazin-3-one 10-oxide)

have been applied to differentiate between viable and

non-viable spores. The metabolically active or germi-

nated spores have the capacity to convert the dark blue

of resazurin to pink color (resorufin) [68].

A new approach for spore germination assessment using

both morphological and metabolomic data have been also

proposed [69]. This based on the microscopic and meta-

bolic profile analysis using high performance liquid chro-

matography-mass spectrometry (HPLC-MS). This

approach provided a strong correlation between morpho-

logical and physiological changes during germination

process by tracking of all the intracellular metabolites

(36 compounds in spores and 28 compounds in mycelium)

using metabolomic approach [69].

Ehgartner et al. [70] have developed an at-line methods

for spore viability staining monitored by flow cytometry
www.sciencedirect.com
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(FCM). This method allowed a real-time monitoring for a

spore viability and physiological status during bioprocess

operation. The differentiation between non-germinated

and germinated spores have been carried out using logis-

tic regression using large number of data generated by

FCM analysis [71].

Biopellet formation and engineering
The initial classification of fungal macromorphology in

submerged culture divided the growth features into five

classes [72]. These include: (1) dispersed mycelia with

short filaments, (2) fluffy mycelia and diffuse mycelial

network, (3) mycelial aggregates with lock-like mycelia,

(4) pelleted growth with compact center and hairy sur-

face, and (5) compact pellet with clear spherical structure

and smooth outer surface. On the other hand, microbial

biopellet has been classified according to the mechanism

of pellet formation into two main types (Figure 1b):

(1) Coagulative or spore agglomerate: Spores coagulate

before or during swelling/germination phase to

develop biopellet of intertwined hyphae.

(2) Hyphal element agglomeration type: spores germi-

nate first to produce hyphae which agglomerate later

to form hyphal clump which develop pellet structure.
Figure 2

Strain Depende

Medium Compostion (BioProcess Dep

Factors affecting fungal macromorphology and biopellet engineering (size, s

from El Enshasy [9�]).

www.sciencedirect.com 
For each production process, specific morphological fea-

tures are required to achieve maximal productivity

(Table 1). For example, the maximal penicillin yield is

associated with a hairy large viable outer layer of lose

pellet [73,74]. To achieve maximal recombinant protein

production in A. niger, hairy small pellet less than 400 mm
diameter with dense structure is desired [19,35,75].

Factors affecting biopellet formation and
structure
Different factors affecting growth morphology and bio-

pellet formation have been extensively studied and

reviewed [9�,10�,76,77]. These factors can be summarized

into three categories: (1) strain, (2) medium composition,

and (3) cultivation conditions Figure 2 shows all the

factors. The strain dependent factors are considered as

the key factors in this process which are not only depen-

dent on the type of strain but also related to the method of

sporulation induction which affect inoculum quality,

spore hydrophobicity, and spore structure. Recently, dif-

ferent molecular approaches have been also applied to

manipulate growth morphology. This based on the data of

gene sequence analysis which shows that more than

2000 genes encoded proteins can participate in fungal
nt Factors

Cultivation Conditionsendent Factors)
Current Opinion in Chemical Engineering

tructure, and density) during cultivation in submerged culture (Modified

Current Opinion in Chemical Engineering 2022, 35:100729
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growth and development. The manipulation of these

genes can lead to significant change in growth morphol-

ogy [11]. Cai et al. [78] reported that the deletion of

polarized growth gene in Aspergillus glaucus mutant

DAgkipA leads to small pellet formation, and increase

the anticancer polyketide aspergiolide A by 82%. Dele-

tion of racA gene (a gene regulates the polymerization of

actin in apical tip) can generate a hyperbranching mutant

which can increase enzyme production. This method was

applied to increase glucoamylase secretion in A. niger by

fourfold [79], and cellulase production in Trichoderma
reesei by threefold compared the wild type strains [80].

Other study reported also that silencing of chitin synthase

genes (chsC) expression resulted in an increase in citric

acid productivity in A. niger through the formation of small

and dense pellet structure which is desired morphology in

this process [12]. Therefore, genetic approach of fungal

morphology engineering become a very powerful tool to

switch mycelial growth to the desired morphology in

many industrial strains.

On the other hand, medium composition, is easily

manipulated and that includes basic nutrients

(C-sources, N-sources, P-sources, and minerals), and

exogenous compounds such as alcohols, polymers, anti-

foam, and surfactants. Other non-essential medium com-

ponents such as solid microparticles can act as an

agglomeration center of spore and can help to shift

growth morphology to smaller pellet [81�]. It was also

reported that addition of microparticles such as talc

powder and aluminum oxide enhanced the production

of multienzyme (phytase, cellulase, amylase, xylanse) in

A. oryzae culture through the reduction of biopellet size

by almost 90% [82].

Cultivation conditions include temperature, pH, other

variables related to bioreactor design (type, size, agitator

type and size), and bioprocess operation conditions (aer-

ation, agitation, mixing). These factors are of special

interest as manipulations of these variables are achiev-

able. In addition, the data generated are very useful in

design scaling up strategy for fungal bioproducts devel-

opment [9�,19,81�,83]. However, an alteration in one

factor can affect other factors. For example, change in

type or concentration of carbon source can affect, growth

rate, C/N ratio and it can enhance the production of

biometabolites which can affect medium viscosity and

pH.

In many processes, increasing agitation rate supports the

production of large number of pellets of smaller size with

compact and dense structure. This step helps to achieve

the maximal active biomass, and allows for good mixing of

Newtonian fluid of culture based on lower viscosity

compared to mycelial growth.
Current Opinion in Chemical Engineering 2022, 35:100729 
Scaling up of fungal culture of pelleted growth
morphology
Scaling up of fungal cultures with controlling the desired

morphology is a challenge. Scaling up involves significant

changes in main variables which affect growth morphol-

ogy in great extent. These include bioreactor design (type

of bioreactor, size and dimensions, internal structure

design, stirrer design and dimension, type of stirrer,

agitation rate, and aeration rate) [83]. Each of these

individual factors have shown significant effect on bio-

pellet morphology. Therefore, besides the generic scaling

up criteria in bioprocess such as: keeping the same power

input, mixing time, and oxygen transfer rate, scaling up

based on maintaining the same growth morphology

become one of the new challenges to achieve maximal

yield. For example: higher shear stress by agitation can

convert growth morphology from large to small dense

pellet with smooth outer surface and further increase in

agitation can break fungal pellet and shift the growth to

disperse fragmented hyphae. Therefore, replacing the

standard Rushton-turbine (a 90� angled flat blade impel-

ler of strong radial flow mixing) with low shear impeller

such pitched-blade can reduce the pellet destruction

during high mixing [84].

Morpho-physiological characterization of
biopellet
Different morphological and physiological approaches

have been used to study the biopellet structure to link

biopellet morphology/structure and physiological status.

Studies focused on direct microscopic analysis with image

analysis system for full characterization of fungal biopar-

ticle [85–87].

However, for a better understanding of the relation

between biopellet size/structure, cell viability, and pro-

ductivity, different techniques have been developed.

Cell viability inside fungal pellet was determined using

a combination between fluorescein diacetate (FDA) and

ethidium bromide (EB) or propidium iodine (PI) [88].

Acridine Orange (AO) staining followed by biopellet

visualization under fluorescence microscope was also

useful approach to differentiate between the growing

and non-growing cells. DNA rich and dsRNA parts of

biopellet emit green fluorescence, where ssRNA rich part

emit orange/red fluorescence. Using this method, the

productive and the non-productive parts were differenti-

ated [9�,19] Figure 3 describe the concept of AO straining

method for quantitative determination of bioactive frac-

tions in biopellet population. For aerobic microorganism

such as A. niger, the outer layer of biopellet of maximal of

200 mm is the most physiologically active layer. Recent

research also confirmed the potential use of cell sorting

method (flowcytometry) for rapid and automated analysis

of large sample of pellet after using different fluorescence

staining. In addition, the development of new generation

of cell sorting machines COPAS (Complex object
www.sciencedirect.com
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parametric analyzer and sorter) extends the applications

of this method to study larger pellet up to 1500 mm
diameter [74,89,90].

Witter et al. [91�], were among the first groups who

reported the quantitative measures of the oxygen transfer

in Penicillium chrysogenum biopellet using micro dissolved

oxygen electrode. Other studies used a combination

technique involving confocal laser scanning microscopy

(CLSM) and oxygen microelectrode system [92]. Other

method was also developed to study in depth the produc-

tive and non-productive zones in biopellet by measuring

oxygen, substrate uptake, and metabolite production.

This method was based on using time-of-flight secondary

ion mass spectrometry (ToF-SIMS) with 18O and D-

[1-18C] glucose as tracer substrate [93]. A recent study

of Schmideder et al. [94�] enabled the development of a

universal model to estimate the oxygen diffusion, sub-

strate and metabolites transfer within fungal biopellet

using X-ray microtomography (mCT) combined with 3D-

image analysis and computational software [95].

As shown, most of studies came with almost the same

conclusion that pellets of less hyphal density facilitate
Figure 3

(a) 

Determination of biopellet active fraction of Aspergillus niger during cultivati

(a), Biopellet produced at different agitation speed visualized under fluoresc

distribution during cultivation using minimal sample size of 100 pellets, (c) C

orange colored part of the biopellet (Modified from El Enshasy et al. [19]).

www.sciencedirect.com 
oxygen and substrate/product transfer. Whereas, in large

compact pellets, only the outer layer exposed to oxygen

and substrates represents the active fraction of biopellet

[91�,96].

Biopellet in co-culture system
Compared to the extensive data presented on the biopel-

let formation of different type of pure cultures, little

information is available on the biopellet engineering in

mixed culture system.

Fungal pellet can act as natural self-immobilization

matrix for other organisms. This approach will reduce

the immobilization cost in many processes. Moreover, the

advantage of this system will be more significant with co-

pelletization of microbes of different oxygen require-

ments. This helps to develop a well-designed self-engi-

neered biopellet structure of microbial consortium (aero-

bic/facultative aerobic/anaerobic organisms) depending

on the distance from the biopellet surface. However,

most of mixed culture biopellet is composed of (fungal/

algal) biosystem reported on the potential use of mixed

biopellet of A. niger and Chlorella vulgaris for cadmium

removal in wastewater [97–99]. This method facilitates
(b)

(c)

Current Opinion in Chemical Engineering

on in submerged culture using acridine orange (AO) staining method

ence microscope after AO staining. (b) Determination of biopellet size

alculation of bioactive fraction of the total biomass based on the red/

Current Opinion in Chemical Engineering 2022, 35:100729



8 Frontiers in chemical engineering; chemical product design — II
the harvesting of microalgae biomass from wastewater

which contributes for large portion of treatment cost up to

20–30% when using traditional separation techniques

[100,101]. This mixed culture biopellet concept was also

useful for the removal of different types of pharmaceu-

ticals from wastewater [99]. To apply this concept, the

microbe-microbe interaction in the consortium should

highly considered. They should be able to co-exist in a

mutualistic (the interacting species/strains gain benefit)

or in commensalistic interaction (one species benefit from

others without benefit/harm effect to other) [102]. There-

fore, the microbial consortium in mixed biopellet should

be well selected. The main drawbacks of the applicability

of mixed biopellet are the potential antagonistic effect

within the microbial consortium especially during sub-

strate limitation, the difficult of contamination detection,

the difficulties of controlling the optimum balance among

the microbial system involved

In general, the environmental and industrial applications

of the mixed culture biopelletare still in the development

stage. The well-engineered biopellets (composed of sym-

biotic biosystems act as cascaded biofactory to perform

complementary biochemical reactions in bioprocess

industries) will provide a competitive solution to reduce

the cost of production in both upstream and downstream

applications.

Conclusion and future perspectives
Although the filamentous microorganisms have long

history in fermentation industries, only limited informa-

tion is available about controlling growth morphology

during cultivation at a large scale standards. This poor

knowledge can be attributed to the industrial nature and

the competitive behaviors of different companies. Pub-

lished data focused on individual factor (one factor at

time: OFAT) approach which lacks the in depth knowl-

edge about the interactions between the different fac-

tors. In addition, studies on biopellet formation did not

take in account the pre-spore formation phase (spore

induction) stage which can greatly influence spore struc-

ture, hydrophobicity, resistance, and germinability.

Studies of biopellet formation need to consider the

whole process from spore induction up to biopellet

formation. This needs to include all factors (genetic,

environmental, nutritional, and engineering variables)

which can affect each step and how these factors act

together at the end of the biopellet development. This

can help to design well customized process to control

growth morphology in submerged culture. In addition,

molecular biology techniques to regulate gene expres-

sion through gene silencing and induction gained popu-

larity, to customize the preferred morphology for each

particular process. In addition, more research is also

required for on-line determination of biopellet viability

during cultivation. This will assist for on-time change of

cultivation parameters to shift the pellet morphology
Current Opinion in Chemical Engineering 2022, 35:100729 
toward the desired structure to achieve the maximal

production yield. Furthermore, understanding of co-cul-

ture system biopellet engineering will be also a useful

tool to improve many industrial processes.
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