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A B S T R A C T   

Industrialization and rapid growth of population have led to an increase in the generation of urban wastes. A 
significant portion of this waste constitutes the organic fraction which could be utilized as a bioresource for 
recovery of value-added products (biofuels, biochemicals, enzymes, bioplastics, bioelectricity), via bioprocessing 
technologies such as anaerobic digestion, microbial fermentation and bioelectrochemical systems. Bioprocessing 
of urban waste is the most reasonable method among the existing diverse methods of waste management in terms 
of its cost, potential and generation of non-toxic products. This review exclusively covers the strategies adapted 
for bioprocessing of urban waste. The microbes used during the bioprocessing of these wastes, are known to have 
a significant potential for degradation of organic waste fractions. In addition, bioprocessing technologies could 
be combined with other waste treatment methods to enhance the efficacy of waste management. However, these 
technologies could be successfully implemented only when they receive the support from the national and local 
governments.   

1. Introduction 

Sustainable development goals (SDGs) launched by the United Na-
tions, are relevant for making more efficient, effective, and equitable 
usage of current bioresources [1]. The SDGs have identified urban waste 
as a valuable resource for the recovery of value-added products [2,3]. 
The utilization of urban waste is well-aligned with some key objectives 
defined by the SDGs such as SDG 7 (affordable and clean energy), SDG 
12 (ensure sustainable consumption and production patterns), SDG 13 
(take urgent action to combat climate change and its impacts) [1]. Urban 
waste in the developing countries mostly goes into unorganized dump-
ing grounds while a major portion of such waste gets burnt onto open 
fields [4,5]. There is an urgent need to develop economic, 
environment-friendly and socially acceptable approaches for efficient 
management of the urban waste [2]. Low and middle-income cities 
mostly generate organic waste which is biodegradable in nature while 
the high-income cities lead to highly diversifies composition of waste 
with a large share of plastic waste [6]. In developing countries, the 
practices associated with urban waste management often focus largely 
upon collection of such wastes followed by dumping in landfills. Fewer 
attempts have also been made to adapt to integrated waste management 
practices involving: (i) waste reduction at the source, (ii) reuse, (iii) 
recycling and (iv) recovery of valuable resources [5,7,8]. All of these 
would be advantageous in terms of reducing the volume of waste and the 

emissions of greenhouse gases [3,4,9]. Energy recovery methods could 
serve as alternative waste management options for the non-recyclable 
combustible wastes [10,11]. Besides reducing the environmental and 
public health impacts, these urban waste valorization methods could 
extensively contribute to the creation of new employment opportunities 
[6]. The valorization strategies are dependent upon the composition of 
the waste. The significant kinds of urban solid wastes include food 
scraps, plastic, paper, glass, metal, clothes, batteries, electric lights etc 
[12]. These waste streams originate from family units, workplaces, 
shopping complexes, schools, road cleaning and others [13]. The urban 
waste streams often include all kinds of modern solid wastes, municipal 
wastewater, stormwater and hazardous wastes [14,15]. 

In this review, the authors have highlighted the importance of sus-
tainable bioprocessing strategies for valorization of urban wastes over 
traditional thermochemical or physicochemical methods. The bio-
process technologies such as anaerobic digestion, microbial fermenta-
tion (enzymatic process) and microbial bioelectrochemistry have been 
discussed in subsequent sections. Further, biorefinery approach is pro-
posed for effective valorization of urban wastes. 

2. Overview of urban waste treatment technologies 

Efficient management or treatment of urban waste has always been 
on priority due to the limited availability of landfills and dumping 
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grounds. The urban waste treatment technologies have been categorized 
into three major categories: 

2.1. Physicochemical treatment 

Physicochemical treatment includes the conversion of feedstock into 
value-added products via physical and chemical processes. Trans-
esterification of utilized vegetable oils, fats and similar feedstocks into 
biodiesel or fluid fills is an example of physicochemical treatment [16]. 

2.2. Thermochemical treatment 

Thermochemical treatment involves application of heat to the nat-
ural wastes for creating heat energy or for transforming such waste into 
biochar or gas or oxygenated fuel oil. This treatment is apt for the urban 
wastes containing a significant level of natural non-biodegradable 
matter [17,18]. Burning, gasification and pyrolysis are among the 
fundamental innovative choices under the thermochemical treatment. 
Urban waste could be heat transformed via ignition using an oxidant 
such as oxygen which leads to the production of steam and carbon di-
oxide [19]. Raised temperature and incomplete air is required for 
gasification to generate gases and synthetic substances as co-products. 
Pyrolysis requires absence of oxygen and elevated temperature as 
essential prerequisite [20,21]. 

2.3. Biological treatment 

Biological treatment or bioprocessing of urban wastes includes the 
production of liquid or methane gas via enzymatic treatment of urban 
waste. The biochemical conversions are usually favoured for urban 
wastes having higher biodegradable organic content along with signif-
icant levels of moisture which reinforces microbial action. Such con-
version is often known as anaerobic processing/biomethanation [22]. 
The high water content of the organic fraction of urban solid waste often 
makes its heat transformation wasteful in terms of energy recovery 
which can be taken care of through anaerobic digestion or microbial 
fermentation [23,24]. Biological treatment strategies or bioprocessing 
technologies such as anaerobic digestion and microbial fermentation 
have been proposed for valorization of urban solid wastes. Microbial 
electrochemistry is another recent bioprocess technology specifically 
proposed for urban liquid waste streams. 

3. Bioprocess technologies for valorization of urban waste 

3.1. Anaerobic digestion 

Anaerobic digestion of urban wastes is a promising valorization 
approach used worldwide to effectively manage/dispose this waste. 
Bioprocessing of urban waste streams via anaerobic digestion minimizes 
the future ecological effects these waste streams. This valorization 
method involves the conversion of urban solid waste into energy with 
natural manure rich in supplements. During anaerobic processing, spe-
cific microbes are used for converting organic fraction of urban waste 
into biogas (a mixture of methane and carbon dioxide) and digestate. 
The removal of the digestate from an anaerobic digester in a landfill has 
an advantage of minimizing the mass and volume of waste, followed by 
inactivation of organic and biochemical substances, reduction of landfill 
gas and immobilization of poisons that pollute the leachate [25]. The 
anaerobic digestion of the organic fraction of urban wastes has been 
comprehensively reviewed in literature [23,26–28]. 

3.2. Microbial fermentation and enzymatic processes 

The heterogenous composition of urban wastes is often a challenge 
while processing this waste. 

The specific presence of glass, metals and plastics, makes it difficult 

to efficiently utilize the biodegradable fractions of this waste. Strategies 
such as anaerobic digestion and thermal gasification often require the 
fractionation of urban solid waste which results in the possible loss of 
biodegradable material while removing the inorganic matter. Consonni 
et al., have reported that 30–70% of the organic fraction was lost during 
mechanical fractionation done prior to anaerobic digestion [29]. The 
literature also supports that there is a requirement for a simple tech-
nology which could efficiently fractionate the organic waste from the 
inorganics without the loss of substrate [30,31]. Jensen et al. have re-
ported a simple enzymatic liquefaction process where the liquefied 
biological components of the urban solid waste could be separated from 
plastic, glass and metals. The pumpable slurry of biological components 
could readily be applied to biochemical or thermo-chemical conversion 
processes [32]. The enzymatically degraded organic fraction can then be 
converted into biofuels and biochemicals via fermentation. However, 
the main challenge associated with the establishment of microbial bio-
refineries on an industrial scale is the development of a suitable strain 
[33]. Different aspects need to be taken into account during the devel-
opment of strain by metabolic engineering. A successful cell factory 
development includes selection of appropriate feedstock, bioprocessing 
steps and downstream processes. Fig. 1 represents a schematic of engi-
neered microbial cell factory for production of value-added products 
from urban wastes. The rapid advances in this field promise a successful 
establishment of microbial biorefineries which could produce biofuels 
and biochemicals from organic fraction of urban wastes and other 
similar biomass. Metabolic engineering could be a game changer in 
creating commercial microbial cell factories by engineering strains that 
can produce target products efficient enough to meet the requirements 
for large scale bioprocessing of urban wastes. 

3.3. Microbial electrochemistry 

Microbial electrochemistry is the technology that utilizes the ability 
of bacteria to generate electric current [34]. Initial goals of 
microbial-bioelectrochemistry or bioelectrochemical system (BES) were 
focussed upon treatment of urban waste streams and generating elec-
tricity [35,36]. However, so far the portfolio of applications of BES has 
increased to various areas such as bio-electro remediation, desalination 
of xenobiotic substances, biodegradation of urban waste water and 
polluted soil, nutrient retrieval, metal recovery or the 
bio-electro-synthesis of value-added products, amongst other applica-
tions [37,38]. Table 1 summarises the bioprocessing of urban waste 
streams for energy recovery via bioelectrochemical systems. The 
extensive progress made in the areas of BES has led to a significant shift 
from the laboratory-scale to the pilot-scale studies [39] getting closer to 
the commercial expansion [40]. BES could pave the way for multiple 
uses which is contrary to the traditional fermentation industrial routes 
where a single product is of major importance. When BES is focussed 
upon production of value-added chemicals, the electric energy provided 
gets converted into chemical energy and stored in the form of 
value-added products such as hydrogen, methane, formic acid, acetic 
acid and others [41,42]. Research has been carried out to generate 
value-added products via BES using urban wastewater in particular. 
Such waste streams could directly be used for this purpose or might 
undergo pretreatment for converting complex waste feedstock into 
simple sugars and volatile fatty acids (VFAs) [43]. VFAs and simple 
sugars can then be used as potential substrate for the synthesis of 
value-added products. 

4. Biorefinery concept applied to urban wastes 

The concept of biorefineries comprises of integrated biobased in-
dustries focused upon complete utilization of bioresources applying a 
wide range of processing strategies [52]. A biorefinery is similar to pe-
troleum refinery where crude oil is fractionated into a wide portfolio of 
products such as fuels and raw materials for the petrochemical 
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industries [52]. The current studies have demonstrated the development 
of biorefinery concept based upon homogenous feedstock from industry 
and agriculture. However, the valorization of urban waste (including 
restaurant and kitchen waste) in a biorefinery concept is limited due to 
the mixed nature of such waste with a complex composition [53]. 
Variation in feedstock composition might be challenging to handle in a 
biorefinery approach [54]. That is why the use of urban solid wastes in 
biorefineries is studied less. Table 2 represents a few studies where the 
organic fraction of urban waste has been valorized via bioprocessing 
strategies in an integrated biorefinery approach. Vea et al., 2018 have 
reported a few examples where mixed urban waste was used as a feed-
stock for recovery of value-added products [54]. The study provide 
evidence that urban waste (specifically the organic fraction) could be 
considered as a resource by estimating the efficiency of valorization 
efficiency and the potential revenue that can be generated out of it. The 
study also suggests that producing biopesticides and enzymes from the 
organic fraction of urban wastes in an integrated biorefinery approach 
could generate high revenues. However, challenges do exist while 
upscaling this technology due to the complexity of biological products 
being produced and hence, further efforts are recommended to be 
concentrated in technology development. In addition, there exists a need 

to address the technoeconomic feasibility, environmental benefits and 
impact of such emerging valorization approaches in the future. 

5. Conclusion and future perspectives 

The application of sustainable bioprocessing technologies is useful is 
the recovery of resources from the organic fraction of urban wastes. It 
helps to achieve a desirable shift from the traditional linear to circular 
(bio) economy. Sustainable bioprocess method such as anaerobic 
digestion is a realistic feasible process for effective management of 
urban waste. However, in order to commercialize this technology, tax 
reductions should be incorporated for the use of sustainable power or 
biogas. Further awareness should be created with the establishment of 
market for the co-products generated during anaerobic digestion. 
Similarly the microbial (enzymatic) conversion of urban solid wastes 
into biofuels (such as bioethanol and biobutanol) has also gained 
widespread attention due to the fact that the conversion process involves 
recycling of organic matter which has a positive impact on environ-
mental conservation based on the waste to energy assessment. In a 
similar fashion, the bioelectrochemical systems could also contribute to 
circular economy by recycling the carbon (from urban waste stream) 

Fig. 1. Schematic representation of microbial cell factory for production of biofuels and biochemicals from organic fraction of urban wastes.  

Table 1 
Bioprocessing of urban waste sources (wastewater) for energy recovery via bioelectrochemical systems.  

Urban waste stream (s) Microorganism (s) Type of 
reactor 

Bioelectricity COD removal 
efficiency 

Reference 

Wastewater from 
brewery 

Geobacter species Double 
chamber MFC 

0.35 W/m3 83% [44] 

Wastewater from fish 
market 

Ochrobactrum (26%), Marinobacter (21%), Bacillus (15%), Rhodococcus (11%), 
Flavobacterium (8%), Martelella (5%), Pseudomonas (6%), Stenotrophomonas (4%), 
Alicyclobacillus 
(3.5%) and Xanthobacter (0.5%) 

Air cathode 
MFC 

420 mW/m2 90% [45] 

Silver laden artificial 
wastewater 

Pseudomonas aeruginosa (MK 163529) Double 
chamber MFC 

3006 mW/ 
m3 

83% [46] 

Landfill leachate Geobacter sulfurreducens Single- 
chamber MFC 

344 mW/m3 90% [47] 

Seafood wastewater halophiles such as Ochrobactrum, Bacillus, Alicyclobacillus and Marinobacter Air cathode 
MFC 

570 mW/m2 58% [48] 

Vegetable oil 
industrial 
wastewater 

mesophilic microorganisms Double 
chamber MFC 

2166 mW/ 
m2 

90% [49] 

Agro-food industry 
wastewater 

electroactive bacterial species Double 
chamber MFC 

27 W/m3 83% [50] 

Urban wastewater exoelectrogenic bacteria Single 
chamber MFC 

13.2 mW/m3 86% [51] 

MFC means microbial fuel cell. 
COD means Chemical Oxygen Demand. 
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back into electrical energy or renewable biochemicals. The interaction 
of electrochemically active microbes with electrodes creates valuable 
opportunities in terms of waste remediation along with the generation of 
energy. The concept of valorization of urban waste in an integrated 
biorefinery approach would be an effective measure of improving the 
environment by reducing the quantum of this waste that otherwise 
needs to be landfilled. Moreover, the integration of processes in a bio-
refinery could increase the efficiency of resource recovery and the final 
quality of the products obtained. Practical aspects such as economic and 
environmental costs should be taken into account in order to implement 
these technologies. Regulatory aspects along with the commitment of 
national and local government should also be considered. Developed 
countries have implemented different measures of urban waste man-
agement in the long term but the developing countries have limited 
themselves to composting and landfilling. Although there is a significant 
potential of resource recovery from urban waste in developing countries, 

the implementation of sustainable technologies as part of the national 
waste management plan is still lacking. 
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of side 
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Bioplastics acidogenic 
fermentation; 
culture 
enrichment; PHA 
production in fed- 
batch reactor 

PHA – [55] 

acidogenic 
fermentation and 
H2 production; 
culture 
enrichment; PHA 
production 

PHA H2, 
wastewater 
remediation 

[56] 

dark fermentation 
and bioH2 

production; 
culture 
enrichment; PHA 
production 

PHA H2 [57] 

acidogenic 
fermentation; 
culture 
enrichment; PHA 
production 

PHA – [58] 

Biopesticides semi-solid 
fermentation 

Bacillus 
thuringiensis 

– [59] 

solid state 
fermentation 

Bacillus 
thuringiensis 

– [60] 

Enzymes solid state 
fermentation 

Glucoamylase Glucose [61] 

solid state 
fermentation 

Cellulase – [62] 

solid state 
fermentation 

Glucoamylase – [63] 
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simultaneous 
saccharification 
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Bioethanol – [64–67] 
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Biobutanol – [65,66] 
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– [68] 

Opoxidation of 
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(generated in- 
situ) 

Plasticizer Fatty acid 
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[69] 

PHA means polyhydroxyalkanoates. 
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