

Mécanique Réronautique et Ingénieries

TD Avionique 1 & Radio...

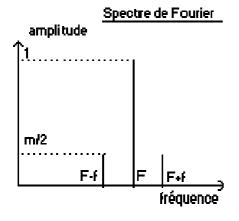
Elément de CORRECTION

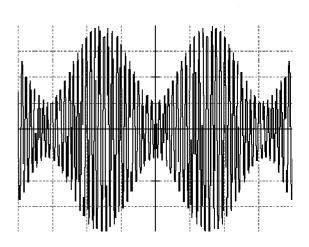
ILS VOR DME ARINC429

V2.3

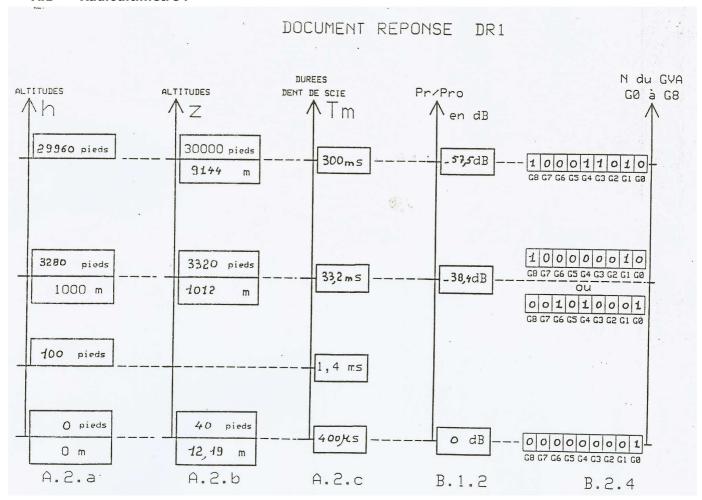
O5MQ5005

D. MICHAUD


www.maintenance-aeronautique.com


A Sommaire:

Α	Sommaire : Erreur ! Signet no	n défini.
A.1	Radioaltimètre:	3
A.2	Dynamique de Gain	3
В	Récepteur ILS	4
B.1	Etude du système d'atterrissage aux instruments :	4
B.2	Etude du synthétiseur FP6 et second étage FP5:	5
	B.2.1.a REPRESENTEZ ci-dessous la bande de fréquences images B _{imageLOC} du « loca	alizer» (
	susceptible de brouiller le récepteur « localizer »); QUANTIFIEZ les limites de cette bar	nde : 6
B.3	Etude de la transmission sur bus ARINC 429 ;:	8
	B.3.1.a INDIQUER le code reçu de la piste 09R	9
	B.3.1.b INDIQUER le code reçu en mode maintenance	
	B.3.1.c On se propose d'identifier le mode de fonctionnement de FS7-4 et FS7-5 à parti	r du
	relevé ci-dessous des chronogrammes des signaux b10 et H	9
	B.3.1.d Etude de la transmission sur bus ARINC, fonction FS9-8:	
	B.3.1.e INDIQUER le code binaire (du MSB au LSB) de ce LABEL	10
	B.3.1.f En mode maintenance le code morse « UU » est transmis. La notice de maintena	
	indique la trame suivante sur le bus ARINC pour les bits de 9 à 32 :	10
	B.3.1.g Le système transmet la fréquence du canal sélectionné sur le bus ARINC selon	
	l'exemple donné en cours. Un relevé indique la trame suivante sur le bus ARINC pour les	bits de 9
	à 32 : 11	
	B.3.1.h Le système transmet la fréquence du canal sélectionné sur le bus. Un relevé indi	ique la
	trame suivante sur le bus ARINC pour les bits de 9 à 32 :	-
B.4	DME Analyse des paramètres d'atterrissage :	
B.5	A partir des données « DME » affichées ci-dessous, CALCULER en mille marin, la dis	
sépa	ant l'aéronef de la piste ; détaillez votre calcul (voir page)	



A.1 Radioaltimètre :

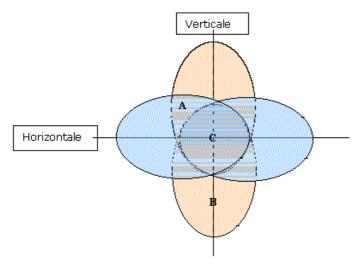
Atténuation – Amplification – Gain – dB – dBm – dBW – dBV...

A.2 Dynamique de Gain

N		combinaisons	20*L0	OG(ratio	o)			nar (OCTAVI	= 6 dB		Sensibilité, LSE	3.	Pleine Eche	elle		dynar	miaue	
bits		ratio base 2	dynam	nique dB	Nb	bits		pui	3017111	_ 0 UD		quantum	,				Db	mque	
1	bits	2	6	dB	1	*	6 dB	=	6	dB	RTC	5	à	500	mV	40	dB	7	bits nécessaires
2	bits	4	12	dB	2	*	6 dB	=	12	dB	VIDEO	0,1	à	1000	mV	80	dB	13	bits nécessaires
3	bits	8	18	dB	3	*	6 dB	=	18	dB	CAN 8 Bits	19,5	à	5000	mV	48	dB	8	bits nécessaires
4	bits	16	24	dB	4	*	6 dB	=	24	dB	CAN 13 bits	0,61	à	5000	mV	78	dB	13	bits nécessaires
5	bits	32	30	dB	5	*	6 dB	=	30	dB	Localizer ILS	0,0001	à	0,4	DDM	72	dB	12	bits nécessaires
6	bits	64	36	dB	6	*	6 dB	=	36	dB	Glide ILS	0,0002	à	0,8	DDM	72	dB	12	bits nécessaires
7	bits	128	42	dB	7	*	6 dB	=	42	dB	VOR 12 bits	0,044	à	180	degrés	72	dB	12	bits nécessaires
8	bits	256	48	dB	8	*	6 dB	=	48	dB	CAN 23 Bits ΣΔ	0,038	à	5000	mV	102	dB	17	bits nécessaires
9	bits	512	54	dB	9	*	6 dB	=	54	dB	Radio altimètre 16 bits	0,5	à	30000	Pieds	96	dB	16	bits nécessaires
10	bits	1024	60	dB	10	*	6 dB	=	60	dB	CAN 6 Bits Meteosat	78,1	à	5000	mV	36	dB	6	bits nécessaires
11	bits	2048	66	dB	11	*	6 dB	=	66	dB	10μV à 100V	0,00001	à	100	V	140	dB	23	bits nécessaires
12	bits	4096	72	dB	12	*	6 dB	=	72	dB	Pince Ampéremètrique	0,1	à	200	Α	66	dB	11	bits nécessaires
13	bits	8192	78	dB	13	*	6 dB	=	78	dB	GPS	0,01	à	2000	km	106	dB	18	bits nécessaires
14	bits	16384	84	dB	14		6 dB	=	84	dB	Laser	0,001	à	100	m	100	dB	17	bits nécessaires

B Récepteur ILS

B.1 Etude du système d'atterrissage aux instruments :

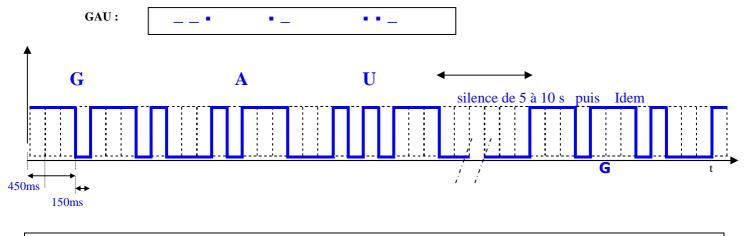

Définissez le rôle des 3 paramètres captés par le récepteur ILS d'un aéronef?

- <u>paramètre « pente-glide »</u> : écart vertical de l'aéronef par rapport au plan de descente de consigne
- <u>paramètre « cap alignement-localizer »</u> : écart horizontal par rapport à l'axe de la piste
- <u>identifiant de la piste</u> : code permettant à l'aéronef d'identifier une piste parmi plusieurs.

Quelle est la particularité des modulants « glide » et « localizer » reçus par l'aéronef lorsqu'ils se trouvent sur la trajectoire de consigne ?

Lorsque l'aéronef se trouve sur la trajectoire de consigne, les deux modulants à 90 et 150Hz ont le même niveau

COMPLETEZ le tableau ci-après avoir analysé les différentes positions (A,B,C) de l'aéronef dans les lobes d'émission ILS ; le récepteur est accordé sur le canal 13. :



Point A,B ou C	В	С	A
Affichage sur le tableau de bord	•		0
Porteuse(s) en <u>MHz</u>	Glide: 332 MHz Loc.: 109,3 MHz		
Modulant dominant en Hz	Glide: 150 HZ Loc: /	Glide: / Loc: /	Glide: 90 Hz Loc: 90 Hz

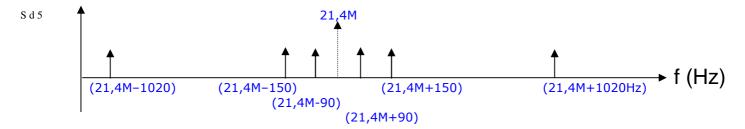
Le système ILS de l'aéroport est classé dans la catégorie 2 (II) ; indiquez la hauteur de décision et la portée visuelle minimales associées : (voir page DT5)

HD (feet): 100 ft RVR (m): 300 m

VOUS REPRESENTEREZ un état haut pour un point ou un trait et un état bas pour les silences (espaces).

Partie D.2

B.2 Etude du synthétiseur FP6 et second étage FP5:


Analyse de FP 5:« identifiant piste » - Localizer -

L'antenne « localizer » d'impédance $Z_L = 50 \Omega$, reçoit un signal dont la tension $u_L = 3\mu V$; EXPRIMEZ, puis CALCULEZ la puissance équivalente P_L en dBm.

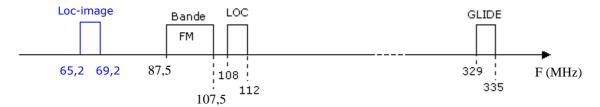
On donne $P_L(dBm) = 10 \log [P_L / (1 mW)]$ avec P_L en mW.

$$P_{L} = U_{L}^{2} / R_{L} = 1.8 \cdot 10^{-13} W$$

 $P_{L} = -97.4 dBm$

Le récepteur est accordé sur le canal 13 ;

Fréquence Image


B.2.1.a <u>Le récepteur étant accordé sur le canal 13, CALCULEZ la fréquence image (localizer):</u>

$$F_{image13} = F_{reçue} - 2$$
. $F_{int1} = 109,3MHz - 2$. $21,4MHz = 66,5$ MHz

B.2.1.b <u>En vous aidant du schéma structurel, page DT47, **MONTREZ** que cette fréquence image est rejetée par le récepteur :</u>

Le schéma structurel de la page DT47 précise que le filtre d'entrée (Fs5-1) a une bande passante comprise entre 108 et 112MHz ; la fréquence image de 66,5MHz est donc rejetée par le filtre d'entrée du récepteur ; il n'y aura donc pas brouillage.

B.2.1.c REPRESENTEZ ci-dessous la bande de fréquences images B_{imageLOC} du « localizer» (susceptible de brouiller le récepteur « localizer »); QUANTIFIEZ les limites de cette bande :

F image mini = F reçue mini - 2 . F intermédiaire = 108 - 42.8 = 65.2 MHz F image maxi = F reçue maxi - 2 . F intermédiaire = 112 - 42.8 = 69.2 MHz

B.2.1.d **JUSTIFIEZ** le choix par le concepteur du récepteur, d'une valeur de fréquence intermédiaire aussi élevée (21,4 MHz):

Une valeur plus basse de la fréquence intermédiaire risquerait de placer la bande « image » dans la bande FM ou de très nombreuses stations seraient susceptibles de brouiller la réception du « localizer » de par leur proximité fréquentielle du filtre d'entrée.

Plus la fréquence intermédiaire est élevée plus la bande de fréquences images est rejetée loin de la bande utile (LOC).

B.2.1.e DETAILLEZ le rôle de la fonction Fs 5-8 « Détecter l'enveloppe ».

Cette fonction permet d'extraire de la porteuse « localizer » modulée en amplitude (AM) les modulants de fréquence 90 et 150Hz qui véhiculent l'information « écart de trajectoire » ; ces derniers font varier l'amplitude de la porteuse que l'on désigne par le terme d'enveloppe.

Cette fonction pourrait être reformulée par : « DEMODULER l'amplitude ».

B.2.1.f En vous appuyant sur les fonctions Fs 6-2, Fs 6-3 et Fs 6-5, exprimez la relation qui lie la fréquence du signal au point « F », notée F_E , au coefficient N(l6) et à la fréquence du signal au point « g6 », notée Fg6.

Les trois fonctions secondaires réalisent une synthèse de fréquences. A l'équilibre (boucle verrouillée), les fréquences en g6 et j6 sont égales, Fg6 = Fj6.

Or,
$$F_{j6} = F_{f} / N(I6)$$
, donc $F_{f} = F_{g6} . N(I6)$

B.2.1.g DETERMIEZ la plage de variation du rapport de division de la fonction FS6-3 « Diviser la fréquence », ainsi que les valeurs minimale et maximale, respectivement notées N₁₆min et N₁₆max permettant de répondre au cahier des charges du récepteur.

La relation donnée à la question B5 donne $\mathbf{N} = \mathbf{F}(\mathbf{F}) / \mathbf{F}(\mathbf{g6})$; $\mathbf{F}(\mathbf{g6}) = 50 \mathrm{kHz}$ (fréquence de référence) ; le schéma fonctionnel de FP6 donne $86.55 \mathrm{MHz} < \mathbf{F}(\mathbf{F}) < 90.55 \mathrm{MHz}$, on en déduit donc que :

$$N_{16 \text{ mini}} = 86550/50 = 1731 < N < 1811 = 90550/50 = N_{16 \text{ maxi}}$$

remarque : de 1731 à 1811 on retrouve bien 41 coefficients impairs pour les 40 canaux et le canal Self TEST (107,95 MHz)

D.3 Self TEST du Récepteur

D.3.3 Pour chacun des signaux "carré" 90 Hz et 150 Hz *JUSTIFIER la présence des raies à 450 Hz*.

Signal carré: on retrouve le fondamental et les harmoniques impaires soit: 90 Hz 270 Hz 450 Hz 630 Hz... amplitudes décroissantes 150 Hz 450 Hz 750 Hz ... amplitudes décroissantes

- Indiquer le rang de l'harmonique pour 90 Hz : 5 450 / 90 = 5
- Indiquer le rang de l'harmonique pour 150 Hz : 3 450 / 150 = 3

D34) Quelle est la fréquence porteuse pour le mode Self TEST pour le "localizer", pour le "Glide"? Canal O

Localizer: 107,95 MHz Glide: 335,15 MHz

D35) INDIQUER la fonction électronique réalisée par les deux structures autours de ces circuits U3A et U3C:

Amplificateur / Additionneur / Inverseur

D4) Filtre Anti-repliement

D25 a) Etude du diagramme de Bode du filtre anti-repliement FS1-1:

- > Déterminer les paramètres à partir du diagramme ci-dessous:
- fcoupure à 3dB: fc = 2,8 kHz au point A

On lit **MOINS de 3 kHz** sur l'échelle logarithmique du diagramme!

pente entre les points **A** et **B** en dB/décade :

on lit pente_{AB} = 38 dB 1 graduation en ordonnée = 2 dB

- En déduire l'ordre du filtre : 38 dB ≈ < 40 dB donc ordre 2
- COMPARER aux résultats obtenus à la guestion D22.

On retrouve bien la fréquence de coupure aux erreurs de mesure et lecture près!

> Sachant que sur notre récepteur la fréquence d'échantillonnage Fech = D25 b) 11,7 kHz:

- \rightarrow CALCULER le rapport Fech/Fc = 11,7 / 2,8 = 4,2
- > La condition de Shannon est elle respectée ?

Oui elle est respectée : Fech/Fc = 4,2 > 2

B.3 Etude de la transmission sur bus ARINC 429 ,:

Etude de l'information « ident morse » véhiculé par a10 :

L'émetteur de chaque piste d'aéroport émet un signal d'identification en code MORSE de trois lettres. Le codage entre le pilote et la tour de contrôle s'effectue par voix radio selon le code d'épellation radiophonique décrit page ...

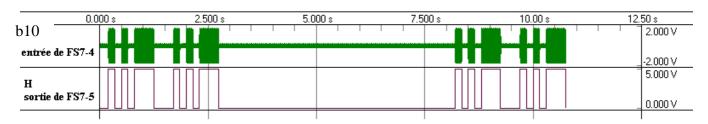
Le signal analogique reçu par l'ILS, transporte cette information en code MORSE par modulation d'amplitude avec porteuse Fm=1020 Hz.

La fonction FP8 transmet cette information sur bus ARINC en utilisant un codage ASCII sur 8 bits : ce codage se limite aux lettres majuscules.

B.3.1.a INDIQUER le code reçu de la piste 09R.

Un exemple est fourni en cours pour l'aéroport Charles de Gaulle - Paris.

	1 ^{ère} Lettre émise	2 ^{ème} Lettre émise	3 ^{ème} Lettre émise
Alphabet Ident09R=			
Code ASCII en décimal			
Epellation radiophonique exemple: « alpha, tango »			


B.3.1.b INDIQUER le code reçu en mode maintenance.

Lors des opérations de maintenance, le récepteur ILS est placé sur un banc de test. Un générateur fourni les signaux analogiques modulé en entrée du récepteur. On fournit un extrait de la notice de maintenance page DT35.

	1 ^{ère} Lettre émise	2 ^{ème} Lettre émise	
Alphabet			
Code ASCII en décimal			L

B.3.1.c On se propose d'identifier le mode de fonctionnement de FS7-4 et FS7-5 à partir du relevé ci-dessous des chronogrammes des signaux b10 et H.

Relevé des signaux aux points b10 et H page DT45 :

•	IDENTIFIER	le code reg	u sous le	s différents	formats	suivant:

codage MORSE : codage lettre d'ALPHABET :....

• En DEDUIRE le mode de fonctionnement du récepteur (maintenance ou approche piste aéroport ?) :

• Le cas échéant, à l'aide du tableau page , IDENTIFIER le nom de la piste de l'aéroport et le numéro du CANAL.

nom de la piste :

numéro du CANAL:

B.3.1.d Etude de la transmission sur bus ARINC, fonction FS9-8:

Le micro-contrôleur BITE de la fonction FP8, communique avec les systèmes de l'avion via un Bus ARINC 429 à travers les fonctions FS9-7 et FS9-8 ;

On se propose d'étudier l'interface avec ce BUS de façon à vérifier la cohérence avec les spécifications techniques du codage des informations et les niveaux électriques associés.

Le codage se fait sur un mot de 32 bits dont l'entête correspond au LABEL 236 en octal.

INDIQUER le code binaire (du MSB au LSB) de ce LABEL ainsi que le numéro du bit du mot 32 bits : (voir page)

	MSB			Labe	el			LSB
numéro du bit du mot 32 bit transmis	1	2	3	4	5	6	7	8
valeur binaire du LABEL	1	0	0	1	1	1	1	0
en OCTAL		2		3			6	

B.3.1.e INDIQUER le code binaire (du MSB au LSB) de ce LABEL

ainsi que le numéro du bit du mot 32 bits : (voir page)

	MSB		La	bel		LSB
Numéro du bit du mot						
32 bits transmis						
valeur binaire du LABEL						
	! ! !					
	 - 					!
, ,	' '	 			 	

B.3.1.f En mode maintenance le code morse « UU » est transmis. La notice de maintenance indique la trame suivante sur le bus ARINC pour les bits de 9 à 32 :

| bit |
|----------------|
| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| |
| ! | | : | | | | | | | | : | | | | | | | | : | | | | | . |
| | L | ! | L | L |] | L | L | | L | | | | L | 1 | | L | 1 | · | L | l | | L | ال ـ ـ ـ ـ ـ ا |

- REPERER dans la trame ci-dessus le codage des lettres « **UU** » :
- INDIQUER la valeur du bit de parité P =
- INDIQUER la valeur du code SDI en binaire puis en décimal :

en binaire SDI=

en décimal SDI=

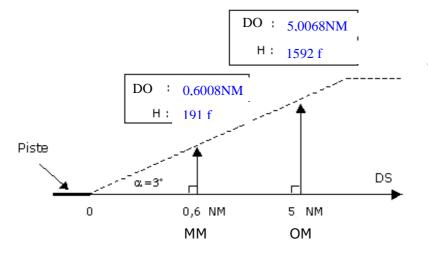
B.3.1.g Le système transmet la fréquence du canal sélectionné sur le bus ARINC selon l'exemple donné en cours. Un relevé indique la trame suivante sur le bus ARINC pour les bits de 9 à 32 :

Voir avec exemple de transmission de la fréquence du canal page

Bit 9	Bit 10	bit 11	Bit 12	bit 13	bit 14	bit 15	bit 16	bit 17	bit 18	Bit 19	bit 20	bit 21	bit 22	bit 23	bit 24	bit 25	bit 26	bit 27	bit 28	bit 29	bit 30	bit 31	bit 32
0	0	0	0	0	0	1	0	1	0	1	1	0	0	1	0	0	1	0	0	0	0	0	1
		1		!																			! !

- REPERER dans la trame ci-dessus la fréquence codée en BCD (Binaire codé Décimal):
- INDIQUER la valeur de cette fréquence en MHz:
- En déduire le numéro du canal:
- INDIQUER la valeur du bit de parité P =
- > INDIQUER la valeur du code **SDI** en binaire puis en décimal : en binaire SDI=
- B.3.1.h <u>Le système transmet la fréquence du canal sélectionné sur le bus. Un relevé indique la trame suivante sur le bus ARINC pour les bits de 9 à 32 :</u>

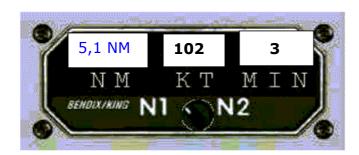
Sur l'extrait d'un mot ARINC 429, quelle est la fréquence transmise ?


Bit 9	bit 10	bit 11	bit 12	bit 13	bit 14	bit 15	bit 16	bit 17	bit 18	bit 19	bit 20	bit 21	bit 22	bit 23	bit 24	bit 25	bit 26	bit 27	bit 28	bit 29	bit 30	bit 31	bit 32
0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1
	0 12		control			0	,01	МН	Z		0,1	МН	Z		1M	lHz		10	MH:	Z			
SD	Ι			0)				L				0			1		SS	Μ	Р

- REPERER dans la trame ci-dessus la fréquence codée en BCD (Binaire codé Décimal):
- INDIQUER la valeur de cette fréquence en MHz: 110,10 MHz
- En déduire le numéro du canal: 21 soit piste 09R
- INDIQUER la valeur du bit de parité **P** = **1**, bit 32
- INDIQUER la valeur du code **SDI** en binaire puis en décimal : en binaire $SDI_{BIN} = LSB$ bit 9 = 0 et MSB bit 10 = 1 en décimal $SDI_{DEC} = 2$

B.4 DME Analyse des paramètres d'atterrissage :

$$DO = DS / \cos (\alpha) \qquad ; \qquad H = DS . tg (\alpha)$$


REPORTER ces valeurs sur le schéma ci dessous :

Justifiez l'écart entre les valeurs de DO : et DS :

L'écart est minime car α étant faible, $\cos \alpha$ est proche de 1.

B.5 A partir des données « DME » affichées ci-dessous, CALCULER en mille marin, la distance séparant l'aéronef de la piste ; détaillez votre calcul (voir page) .

$$V (KT) = d (NM) / t (h)$$

 $d = V \cdot t = 102 \cdot (3/60) = 5,1 NM$

Conversions et calculs de la distance DME et de la durée de parcours :

DME (NM)	DME (km)	DME (ft)	Vitesse (KT)	Durée Trajet estimée (min)	T _{mesuré} (μs)	T _{trajetOnde} (μs)	Mode X ou Y?
1			100				
10			150				Х
200			500				Y
			200	5			
	50			10			
	500			50			Y
			300		65		Х
			400			330	Y