Introduction 00000 Méthodes de DLD 00000000000 Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Détection et Localisation de Défauts

Christophe Farges

MASTER 2 MAINTENANCE AÉRONAUTIQUE spécialité Ingénierie et Maintenance Aéronautique Avionique

4 TNV 902 U

Introduction	Plan	Méthodes de DLD	Méthode de l'espace de parité	Cas d'étude d'un quadricoptère
●○○○○	O	00000000000	000000000000000000000000000000000000	
Introduc	tion			

- Automatique à l'IMA
 - Modélisation
 - à partir des équations physiques : maquette d'hélicoptère, représentation d'état d'un avion, attitude d'un satellite (L3/M1/M2)
 - par identification (M2)
 - Commande
 - P/PI/PID (L3)
 - LQG (M1)
 - commande numérique (M1)
 - commande multivariable/robuste (M2)
 - \Rightarrow conception
 - Diagnostic
 - détecter et localiser un phénomène anormal (défaut) dans un système
 - ⇒ lien direct avec la maintenance aéronautique (flags pilote et capteurs, calculateur de vol et actionneurs...)

Introduction	Plan	Méthodes de DLD	Méthode de l'espace de parité	Cas d'étude d'un quadricoptère
0000	O	00000000000	000000000000000000000000000000000000	
Introduc	tion			

• Exemple 1 : défaillances affectant les chaînes de commande de gouvernes

- Symptôme : oscillations indésirables affectant les gouvernes
- Conséquences : performance et qualité de vol dégradées, usure des actionneurs...
- Cause : dysfonctionnement de composants électriques des boucles de commande
- ⇒ Comment détecter au plus vite ce défaut en vol afin de changer d'actionneur ? (chaque surface de contrôle a deux actionneurs redondants)

Introduction	Plan	Méthodes de DLD	Méthode de l'espace de parité	Cas d'étude d'un quadricoptère
00000	O	00000000000	000000000000000000000000000000000000	
Introduct	tion			

• Exemple 2 : défaillances affectant le véhicule de rentrée HL-20

- concept de la NASA pour des missions spatiales habitées : transfert d'équipage vers la station spatiale internationale, maintenance de satellites...
- objectifs : complément à l'USS shuttle orbiter à coût opérationnel réduit, sécurité de vol améliorée, possibilités d'atterrir sur des pistes conventionnelles
- 7 surfaces de contrôle
- 2 centrales inertielles (accéléromètres et gyroscopes), 1 centrale aérodynamique (altitude, pression dynamique, vitesse), 1 GPS
- ⇒ défauts actionneurs sur les volets latéraux (blocage de la servo-commande, embardée due à un dysfonctionnement du circuit hydraulique)
- ⇒ défauts capteurs sur la centrale inertielle (endommagement du capteur durant la phase hypersonique, biais, dérive)

Introduction	
00000	

Méthodes de DLD 00000000000 Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Introduction

Plan

• Exemple 3 : MICROSCOPE (MICRO-Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence) du CNES

- minisatellite de 300 kg lancé le 25 avril 2016
- objectif : tester le principe d'équivalence avec une meilleure précision que sur Terre (100 fois)
- instrument : constitué de deux accéléromètres différentiels identiques, chaque accéléromètre contient 2 étalons de masse cylindriques maintenus par commande au centre d'une cage par lévitation électrostatique
 - ightarrow un accéléromètre a des étalons de même matériau (Pt)
 - $\rightarrow\,$ l'autre accéléromètre a des étalons de masse différente (Pt/Ti)
- \neq sur la commande des deux étalons \Rightarrow violation du principe d'équivalence
- expérience sensible à des déviations de trajectoire \Rightarrow nécessité de détecter
 - $\rightarrow\,$ défauts actionneurs : blocage de diaphragmes parmi les 12 tuyères
 - $\rightarrow\,$ défauts capteurs : biais sur position et vitesse retournées par la centrale

Introduction ○○○○●	Plan 0	Méthodes de DLD 0000000000	Méthode de l'espace de parité	Cas d'étude d'un quadricoptère
Introduct	tion			

- Objectifs du cours
 - Vue d'ensemble des méthodes de détection et localisation de défauts utilisées dans le domaine aérospatial
 - Focus sur les méthodes à base de modèles et notamment l'espace de parité
 - Cas d'étude : détection de pannes en vol sur un quadricoptère

Déroulement

- 8 séances de cours intégré
- 1 séance sur une annale d'examen
- 1 TP sur le cas d'étude
- Pré-requis
 - Connaissances basiques en représentation d'état et commande numérique
 - Utilisation de MATLAB/SIMULINK

Introduction	Plan	Méthodes de DLD	Méthode de l'espace de parité	Cas d'étude d'un quadricoptère
00000	●	0000000000	0000000000000000000000000	
Plan du	cours			

1) Vue d'ensemble des méthodes de détection et localisation de défauts

- Tâches de diagnostic (définitions)
- Approches basées sur la surveillance de signaux
- Redondance matérielle
- Redondance analytique

Méthode de l'espace de parité

- Rappel sur les systèmes échantillonnés
- Espace de parité statique
- Espace de parité dynamique

3 Cas détude : DLD pour un quadricoptère

- Modélisation
- Synthèse de la loi de commande

Plan du cours

Plan

Vue d'ensemble des méthodes de détection et localisation de défauts

- Tâches de diagnostic (définitions)
- Approches basées sur la surveillance de signaux
- Redondance matérielle
- Redondance analytique

Méthode de l'espace de parité

- Rappel sur les systèmes échantillonnés
- Espace de parité statique
- Espace de parité dynamique

3 Cas détude : DLD pour un quadricoptère

- Modélisation
- Synthèse de la loi de commande

Introduction Plan

Méthodes de DLD

Méthode de l'espace de parité

Tâches de diagnostic (définitions)

• Tâche de détection de défauts

- Objectif : mettre en évidence l'occurence d'événements pouvant conduire à un fonctionnement anormal dusystème
- $\rightarrow\,$ il faut distinguer les *défauts* des *perturbations* qui écartent le système du fonctionnement désiré mais se produisent en fonctionnement normal
- Tâche d'isolation (ou localisation)
 - Objectif : circonscrire la faute à un composant ou sous-ensemble de composants (actionneurs, capteurs)
- Techniques de diagnostic de pannes
 - Techniques sans modèle
 - \rightarrow approches basées sur la surveillance de signaux
 - \rightarrow redondance matérielle
 - Techniques à base de modèles
 - \rightarrow redondance matérielle

Cas d'étude d'un quadricoptère

Approches basées sur la surveillance de signaux

Hypothèses

Plan

- Des grandeurs mesurables sont porteuses d'informations sur les défauts
- Principe
 - Utiliser le traitement du signal pour surveiller si ces grandeurs se comportent normallement
- Analyse dans le domaine temporel
 - Amplitude (limit-value checking)
 - $\rightarrow\,$ si les grandeurs quittent un intervalle correspondant à un fonctionnement normal, une alarme est déclenchée
 - Moyenne, variance

- Analyse dans le domaine fréquentiel
 - Densité spectrale de puissance

var.

max

min

Approches basées sur la surveillance de signaux

• Exemple : sonde de température d'air du Mercure

- Indication de température résulte de la mesure d'une résistance dont la valeur suit une loi connue dépendant de la température
- Gamme de mesure : $[-99^\circ C,+50^\circ C]$
- Défaillances surveillées
 - perte d'alimentation, court-circuit
 - erreur dans le processus de mesure
 - → par exemple quand la température quitte la plage admissible
 - \rightarrow détectée par un circuit électrique
- utilisation de l'AMM pour localiser la panne
- Avantage : simple à mettre en oeuvre
- Inconvénients
 - pas efficace pour des plages de fonctionnement importantes
 - surcoût lié à la mise en place de chaînes de mesure supplémentaires

Cas d'étude d'un quadricoptère

Redondance matérielle

- Principe
 - introduire des composants matériels additionnels identiques (redondants)
 - $\rightarrow\,$ défaut détectée si la sortie du composant original diffère de celle des composants redondants
- Redondance matérielle double
 - Composants critiques dupliqués

- $r = m_1 m_2$ est appelé signal de résidu
- le résidu r est comparé à un seuil dépendant de la qualité de la mesure
- \Rightarrow Le composant défaillant n'est pas isolé

Introduction	Plan	Méthodes de DLD
		00000000000

Cas d'étude d'un quadricoptère

Redondance matérielle

• Redondance matérielle triple

- Trois signaux de résidu : $r_1 = m_1 m_2$, $r_2 = m_1 m_3$, $r_3 = m_2 m_3$
- Composant défaillant localisé par un voteur

Composant 1	Composant 2	Composant 3	<i>r</i> ₁	r ₂	<i>r</i> 3
✓	✓	✓	0	0	0
×	\checkmark	\checkmark	\neq 0	\neq 0	0
✓	×	\checkmark	$\neq 0$	0	$\neq 0$
✓	\checkmark	×	0	\neq 0	\neq 0
	×	×	$\neq 0$	\neq 0	\neq 0
×	\checkmark	×	$\neq 0$	\neq 0	\neq 0
×	×	\checkmark	$\neq 0$	≠ 0	$\neq 0$
×	×	×	≠ 0	<i>≠</i> 0	\neq 0

⇒ isole un défaut **unique**

Cas d'étude d'un quadricoptère

Redondance matérielle

 \rightarrow Composant défaillant isolé si au max. $\lfloor \frac{n-1}{2} \rfloor$ apparaissent simultanément

- Exemple : détection et localisation de défauts capteurs sur Airbus A380
 → angle d'attaque, vitesses de tangage/roulis/lacet...
- Avantages : simple à concevoir et à mettre en oeuvre
- Inconvénients
 - fautes affectant l'ensemble des composants non détectables (perte d'alimentation, problème de masse...)
 - coût élevé (dont limités à un nombre réduit de composants clés)

Introduction Plan Méthodes de DLD

Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Redondance analytique

- Idée générale
 - redondance matérielle remplacée par 1 modèle implanté dans 1 calculateur
 - \rightarrow utilisation des signaux connus (commande et mesure)
 - \rightarrow nécessite un modèle du système (actionneurs + procédé + capteurs)

- comportement du système comparé en temps réel à celui de son modèle
 - $\rightarrow~$ une différence peut être interprétée comme le symptôme d'un défaut
- Avantages :
 - pas de coût supplémentaire
 - simple à mettre en oeuvre (calculateur hébergeant la loi de commande)
 - permet de discriminer les effets de défauts et des perturbations

Cas d'étude d'un quadricoptère

Redondance analytique

• Retour sur l'exemple 1 : défaillances de gouvernes

- Symptôme : oscillations indésirables affectant les gouvernes
- Conséquences : performance, qualité de vol, actionneurs dégradés...
- Cause : dysfonctionnement de composants électriques de commande
- ⇒ Avant l'A380 : méthode basée sur la surveillance de signaux (sans modèle)
- ⇒ Programme A380 : redondance analytique car oscillations appartiennent à la bande passante de la loi de commande (à base de modèle)

Cas d'étude d'un quadricoptère

Redondance analytique

- Principe
 - Comparer comportement du sys. (subissant pert. et défauts) et son modèle
 - $\rightarrow\,$ résultat de la comparaison : résidu (signal indicateur de défauts)
- Implantation dans le cas d'une commande numérique

- ightarrow générateur de résidu déterminé à partir du modèle du système échantillonné
- Objectif (cas idéal)
 - cas sans défaut : $r_k = 0 \forall d_k$
- cas défaillant : $r_k \neq 0$

- Objectif (cas réaliste)
 - r_k doit être le plus sensible à d_k et le moins sensible à f_k
 - l'analyse de résidu génère l'alarme (seuil...) et isole le défaut

17 / 76

Cas d'étude d'un quadricoptère

Redondance analytique

- Types de détectabilité
 - Détectabilité faible
 - $\rightarrow\,$ résidu affecté par le défaut uniquement en régime transitoire

- Détectabilité forte
 - $\rightarrow~$ résidu affecté par le défaut en régime permanent

 $\Rightarrow\,$ Sinon, le défaut est qualifié de indétectable par le résidu

- Problème de diagnostic
 - Étant donné un modèle du système échantillonné, comment déterminer un générateur de résidu et réaliser l'analyse des résidus obtenus?
 - \Rightarrow Méthodologie présentée dans ce cours : l'approche de l'espace de parité

Cas d'étude d'un quadricoptère

Plan du cours

Plan

D Vue d'ensemble des méthodes de détection et localisation de défauts

- Tâches de diagnostic (définitions)
- Approches basées sur la surveillance de signaux
- Redondance matérielle
- Redondance analytique

Méthode de l'espace de parité

- Rappel sur les systèmes échantillonnés
- Espace de parité statique
- Espace de parité dynamique

3 Cas détude : DLD pour un quadricoptère

- Modélisation
- Synthèse de la loi de commande

Rappel sur les systèmes échantillonnés

Méthodes de DLD

Introduction

Plan

• Schéma bloc avec convertisseurs N/A pour la commande et la DLD

Méthode de l'espace de parité

• actionneurs + procédé + capteurs $\equiv \Sigma$ de représentation d'état

$$\rightarrow \Sigma : \begin{cases} \dot{x}(t) &= \tilde{A}x(t) + \tilde{B}u(t) \\ y(t) &= \tilde{C}x(t) + \tilde{D}u(t) \end{cases}$$

• actionneurs + procédé + capteurs + CNA + CAN $\equiv \Sigma_k$

$$\rightarrow \Sigma_{k} : \begin{cases} x(k+1) = Ax(k) + Bu(k) + B_{d}d(k) + B_{f}f(k) \\ y(k) = Cx(k) + Du(k) + D_{d}d(k) + D_{f}f(k) \\ \text{avec } A = e^{\tilde{A}T_{e}}, \ B = \int_{0}^{T_{e}} e^{\tilde{A}(T_{e}-\alpha)}\tilde{B}d\alpha, \ C = \tilde{C}, \ D = \tilde{D} \\ \rightarrow \text{ perturbations et défauts appliqués par hyp. au système échantillonné} \end{cases}$$

20 / 76

Cas d'étude d'un quadricoptère

Introduction Plan 00000 0 Méthodes de DLD 00000000000 Méthode de l'espace de parité

Espace de parité - principe

Modèle

$$\Sigma_{k} \begin{cases} x(k+1) = Ax(k) + Bu(k) + B_{d}d(k) + B_{f}f(k) \\ y(k) = Cx(k) + Du(k) + D_{d}d(k) + D_{f}f(k) \end{cases}$$

- $x(k) \in \mathbb{R}^n$: état, $u(k) \in \mathbb{R}^m$: commandes, $y(k) \in \mathbb{R}^p$: mesures
- $d(k) \in \mathbb{R}^{m_d}$: perturbations, $f(k) \in \mathbb{R}^{m_f}$: défauts
- Objectif
 - Calculer r(k) en utilisant les signaux connus u(k), y(k) et le modèle Σ_k
 - r(k) doit être sensible aux défauts f(k) et robuste aux perturbations d(k)
- Principe de l'espace de parité statique
 - utiliser la redondance directe entre les signaux mesurés (au même instant) (quand une variable mesurée peut être déduite des autres)
 - \rightarrow à l'instant k, r(k) généré à partir de y(k) et u(k) uniquement
 - \Rightarrow espace de parité statique
 - $\bullet\,$ utiliser la redondance temporelle entre mesures et entrées à des instants $\neq\,$
 - ightarrow à l'instant k, r(k) généré à partir des mesures et entrées présentes et passées
 - \Rightarrow espace de parité dynamique

Introduction 00000 Plan

Méthodes de DLD 00000000000 Méthode de l'espace de parité

Espace de parité statique - exemples introductifs

Modèle

$$\Sigma_{k} \begin{cases} x(k+1) = Ax(k) + Bu(k) + B_{d}d(k) + B_{f}f(k) \\ y(k) = Cx(k) + Du(k) + D_{d}d(k) + D_{f}f(k) \end{cases}$$

- $x(k) \in \mathbb{R}^n$: état, $u(k) \in \mathbb{R}^m$: commandes, $y(k) \in \mathbb{R}^p$: mesures
- $d(k) \in \mathbb{R}^{m_d}$: perturbations, $f(k) \in \mathbb{R}^{m_f}$: défauts
- Objectif : trouver r(k) = f(y(k)) sensible uniquement aux défauts
- Exemple 1 : redondance matérielle

•
$$y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x(k) + \begin{bmatrix} f_1(k) \\ f_2(k) \end{bmatrix}$$

 $\rightarrow f_i(k) : \text{défaut sur le capteur } i$
• $r(k) = \underbrace{y_1(k) - y_2(k)}_{\text{forme de calcul}} = \underbrace{x(k) + f_1(k) - x(k) - f_2(k)}_{\text{forme d'évaluation}} = \underbrace{f_1(k) - f_2(k)}_{\text{forme d'évaluation}}$

 \Rightarrow r(k) peut détecter à la fois $f_1(k)$ et $f_2(k)$

Introduction	Plan	Méthodes de DLD	Méthode de l'espace de parité	Cas d'étude d'un
			000000000000000000000000000000000000000	

quadricoptère

Espace de parité statique - exemples introductifs

Model

$$\Sigma_k : y(k) = Cx(k) + D_d d(k) + D_f f(k)$$

- $x(k) \in \mathbb{R}^n$: état, $u(k) \in \mathbb{R}^m$: commandes, $y(k) \in \mathbb{R}^p$: mesures
- $d(k) \in \mathbb{R}^{m_d}$: perturbations, $f(k) \in \mathbb{R}^{m_f}$: défauts
- Objectif : trouver r(k) = f(y(k)) sensible aux défauts uniquement

• Exemple 2
•
$$y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \\ y_5(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \end{bmatrix}$$

 \rightarrow $f_1(k)$ affecte le capteur 3 et $f_2(k)$ affecte les capteurs 2 et 3

• Forme de calcul :
$$\begin{cases} r_1(k) = 2y_1(k) - y_3(k) \\ r_2(k) = y_1(k) + y_2(k) - y_5(k) \end{cases}$$

- $\rightarrow \underline{\text{Exercice}} : \text{déterminer la forme d'évaluation et vérifier que } r_1(k) \text{ et } r_2(k) \\ \text{ sont indépendants de } x(k) \text{ mais sensibles à } f_1(k) \text{ et } f_2(k)$
- $\rightarrow~$ est-il possible d'isoler les défauts à partir de ces résidus ?
- \Rightarrow méthode pour trouver les expressions de $r_1/r_2 \Rightarrow$ espace de parité statique $\frac{23}{76}$

Espace de parité statique - détection

Modèle

$$\Sigma_k : y(k) = Cx(k) + D_d d(k) + D_f f(k)$$

- $x(k) \in \mathbb{R}^n$: état, $u(k) \in \mathbb{R}^m$: commandes, $y(k) \in \mathbb{R}^p$: mesures
- $d(k) \in \mathbb{R}^{m_d}$: perturbations, $f(k) \in \mathbb{R}^{m_f}$: défauts
- Résidus obtenus comme combinaison linéaires des mesures

•
$$r(k) = Wy(k)$$
 (forme de calcul)

- \rightarrow *W* matrice de parité
- \rightarrow déterminer W dans l'exercice précédent
- \Rightarrow comment choisir W t.q. r(k) est sensible aux défauts uniquement?
- Forme d'évaluation du résidu

•
$$r(k) = Wy(k) = WCx(k) + WD_dd(k) + WD_ff(k)$$

 \rightarrow cas idéal (sans perturbation) : $r_k = WCx(k) + WD_ff(k)$

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Calcul de la matrice de parité W
 - Forme d'évaluation (cas sans perturbation) :

 $r(k) = WCx(k) + WD_ff(k)$

• Contrainte de robustesse

$$\rightarrow f(k) = 0 \Rightarrow r(k) = 0 (pour tout x(k))$$

• Contrainte de sensibilité aux défauts

$$\rightarrow f(k) \neq 0 \Rightarrow r(k) \neq 0$$

• Solution ?

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Calcul de la matrice de parité W
 - Forme d'évaluation (cas sans perturbation) :

 $r(k) = WCx(k) + WD_ff(k)$

• Contrainte de robustesse

$$\rightarrow f(k) = 0 \Rightarrow r(k) = 0 (pour tout x(k))$$

• Contrainte de sensibilité aux défauts

$$\rightarrow f(k) \neq 0 \Rightarrow r(k) \neq 0$$

• Solution ?

$$\Rightarrow \text{ choisir } W \text{ t.q. } WC = 0 \Rightarrow r(k) = WD_f f(k)$$

- W est orthogonale C
- W existe si $p > \operatorname{rang}(C)$ (mesures redondantes), $W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times p}$

Remarque : si toutes les colonnes C sont indépendantes \Rightarrow rang(C) = n \Rightarrow la condition devient p > n (plus de mesures que de variables d'état)

Remarque

Le terme **parité** vient des bits de parité utilisé en informatique. Ces bits introduisent une redondance de sorte à détecter une erreur dans la transmission de données numériques.

Introduction 00000 Méthodes de DLD 00000000000 Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Détectabilité et espace de parité
 - Forme d'évaluation : $r(k) = WCx(k) + WD_ff(k)$ avec W t.q.

WC = 0

Plan

- ightarrow rappel : le défaut est détectable si orall $f(k)
 eq 0 \Rightarrow r(k)
 eq 0$
- \Rightarrow sensibilité aux défauts non garantie
- Défaut détectable si WD_f n'a pas de colonne nulle
 - \Rightarrow vérification a posteriori
 - $\rightarrow\,$ remarque : si le défaut est détectable, il est fortement détectable

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Une méthode pour déterminer <u>une</u> matrice de parité
 - $\Rightarrow \text{ Objectif}: \text{trouver } W \text{ t.q. } WC = 0 \text{ avec } C \in \mathbb{R}^{p \times n}, \ p > n, \ \text{rang}(C) = n$

4 partitionner
$$C = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$
, $C_1 \in \mathbb{R}^{n \times n}$, $C_2 \in \mathbb{R}^{(p-n) \times n}$

- \rightarrow si C_1 de rang plein, choisir $W = \begin{bmatrix} C_2 C_1^{-1} & -I_{p-n} \end{bmatrix}$ (ainsi WC = 0)
- \rightarrow sinon aller à l'étape 2
- Permuter les lignes de C t.q. les n premières lignes constituent une matrice de rang plein
- **6** partitionner $\tilde{C} = \begin{bmatrix} \tilde{C}_1 \\ \tilde{C}_2 \end{bmatrix}$, $\tilde{C}_1 \in \mathbb{R}^{n \times n}$, $\tilde{C}_2 \in \mathbb{R}^{(p-n) \times n}$ (\tilde{C}_1 est inversible)
- calculer $\tilde{W} = \begin{bmatrix} \tilde{C}_2 \tilde{C}_1^{-1} & -I_{p-n} \end{bmatrix}$ (ainsi $\tilde{W} \tilde{C} = 0$)
- retrouver W par permutation des colonnes de W de la même façon que les lignes de C ont été permutées
- \Rightarrow W n'est pas unique (dépend par exemple des lignes choisies)
- \rightarrow cette méthode garantit l'indépendance des p n équations de parité <u>Remarque</u> : si rang(C) < n, enlever des colonnes de C pour conserver <u>uniquement</u> rang(C) colonnes indépendantes

Espace de parité statique - détection

- \bullet Calcul d'une matrice de parité avec $\rm Matlab$
 - Objectif : trouver W t.q. WC = 0 avec $C \in \mathbb{R}^{p \times n}$, p > n, rang(C) = n
 - $\rightarrow W$ n'est pas unique
 - Pour obtenir une solution unique, une contrainte est ajoutée

ightarrow les lignes de W doivent constituer une base orthonormée

Le problème s'écrit

$$\rightarrow \text{ Trouver } W \text{ t.q. } \begin{cases} WC &= 0 \\ WW^T &= I_{p-n} \end{cases}$$

• Solution obtenue en utilisant W=null(C')'

ightarrow Remarque : résultat différent de celui obtenu avec la méthode précédente

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

Exercice

•
$$y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \\ y_5(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \end{bmatrix}$$

- Déterminer un matrice de parité W
- Prouver la forme d'évaluation du résidu
- O Ce résidu permet-il de détecter tous les défauts?
- **(4)** Même question avec un défaut supplémentaire $f_3(k)$ affectant $y_4(k)$:

$$\begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \\ y_5(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \\ f_3(k) \end{bmatrix}$$

 $\rightarrow\,$ même exercice en utilisant $\rm Matlab$

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Robustesse aux perturbations
 - Modèle : $y(k) = Cx(k) + D_d d(k) + D_f f(k)$
 - Résidu $r(k) = WCx(k) + WD_d d(k) + WD_f f(k) = WD_d d(k) + WD_f f(k)$ avec W t.q. WC = 0
 - Vérification a posteriori de la robustesse
 - \rightarrow si $WD_d = 0$: insensibilité aux perturbations
 - Comment prendre en compte la robustesse a priori ?

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Robustesse aux perturbations
 - Modèle : $y(k) = Cx(k) + D_d d(k) + D_f f(k)$
 - Résidu $r(k) = WCx(k) + WD_d d(k) + WD_f f(k) = WD_d d(k) + WD_f f(k)$ avec W t.q. WC = 0
 - Vérification a posteriori de la robustesse

 \rightarrow si $WD_d = 0$: insensibilité aux perturbations

- Comment prendre en compte la robustesse a priori ?
 - $\Rightarrow \text{ chosir } W \text{ t.q. } W \begin{bmatrix} C & D_d \end{bmatrix} = 0$

si une telle matrice W existe...

- \rightarrow condition d'existence : $p > \operatorname{rang}(\begin{bmatrix} C & D_d \end{bmatrix})$
- \rightarrow condition d'existence simplifiée : $p > (n + m_d)$ (si $\begin{bmatrix} C & D_d \end{bmatrix}$ de rang plein)
 - si une telle matrice W n'existe pas
- $\rightarrow\,$ un résidu scalaire \bar{r} est calculé comme une combinaison linéaire des composantes de r
- \Rightarrow \bar{r} doit être le plus sensible aux défauts et le moins sensible aux perturbations

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Robustesse aux perturbations
 - Modèle : $y(k) = Cx(k) + D_d d(k) + D_f f(k)$
 - Résidu $r(k) = Wy(k) = WD_d d(k) + WD_f f(k)$ avec W t.q. WC = 0
 - Objectif
 - ightarrow générer un résidu scalaire \overline{r} à partir des composantes de r :

 $\overline{r}(k) = v^{T}r(k) = v^{T}WD_{d}d(k) + v^{T}WD_{f}f(k) \text{ avec } W \text{ tq } WC = 0$ $v \in \mathbb{R}^{p-n} \text{ appelé sélecteur de résidu}$

- $\rightarrow v$ choisi t.q. \bar{r} le plus sensible à f et le moins sensible à d
- Critère à minimiser
 - \rightarrow v choisi de sorte à minimiser

$$J = \frac{\|\mathbf{v}^T W D_d\|_2^2}{\|\mathbf{v}^T W D_f\|_2^2} = \frac{\mathbf{v}^T W D_d D_d^T W^T \mathbf{v}}{\mathbf{v}^T W D_f D_f^T W^T \mathbf{v}}$$

• Sélecteur optimal vis-à-vis du critère J

•
$$v^* = \arg\min_{v} \frac{v^T W D_d D_d^T W^T v}{v^T W D_f D_f^T W^T v}$$

 \rightarrow comment calculer v^* ? \Rightarrow théorème de Gantmacher

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

• Robustesse aux perturbations

Théorème de Gantmacher

[Theory of matrices, 1961]

Le vecteur $v^* = \arg \min_{v} \frac{v^T M v}{v^T N v}$ est le vecteur propre associé à la plus petite valeur propre λ_{min} du faisceau (M, N) et $\min_{v} \frac{v^T M v}{v^T N v} = \lambda_{min}$

- Rappel sur les faisceaux de matrices
 - Le faisceau associé aux matrices carrées M ∈ ℝ^{n×n} et N ∈ ℝ^{n×n} est l'ensemble de matrices P(α) = M + αN = (M, N), α ∈ ℝ
 - Valeurs propres de (M, N) :
 - \rightarrow (*M*, *N*) a *n* valeurs propres
 - \rightarrow soit q le nombre de valeurs propres de N, alors (M, N) a q valeurs propres égales à $+\infty$ et n q valeurs propres finies
 - \rightarrow les n-q valeurs propres finies de (M, N) sont $\lambda \in \mathbb{C}$: det $(M \lambda N) = 0$

• Vecteur propre V_i associé à la valeur propre λ_i : $V_i \in \mathbb{C}^n$: $MV_i = \lambda_i NV_i$

 \rightarrow si $M = M^T$ et $N = N^T \Rightarrow \lambda \in \mathbb{R}$, $V_i \in \mathbb{R}^n$

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

Robustesse aux perturbations

• Résidu le plus sensible à f et le moins sensible à d :

$$\rightarrow \bar{r}(k) = v^{*T}r(k) = v^{T}WD_{d}d(k) + v^{T}WD_{f}f(k) \text{ avec } W \text{ tq } WC = 0$$

$$\rightarrow v^{*} = \arg\min_{v} \frac{v^{T}WD_{d}D_{d}^{T}W^{T}v}{v^{T}WD_{f}D_{f}^{T}W^{T}v}$$

- Méthode pour trouver le sélecteur optimal
 - **1** Touver W t.q. WC = 0
 - **2** Déterminer les valeurs propres λ du faisceau $(WD_d D_d^T W^T, WD_f D_f^T W^T)$
 - ${f 0}$ Déterminer le vecteur propre v^* associé à la plus petite valeur propre λ_{min}
- La valeur optimale du critère est λ_{min} :

$$\rightarrow \min_{v} \frac{v^{T} W D_{d} D_{d}^{T} W^{T} v}{v^{T} W D_{f} D_{f}^{T} W^{T} v} = \lambda_{min}$$

Introduction Plan Méthodes de DLD Méti

Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Espace de parité statique - détection

Exercice

•
$$y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \\ y_5(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d_1(k) \\ d_2(k) \end{bmatrix}$$

 $\rightarrow d_1(k)$ est un bruit affectant les mesures 1, 2 et 3

 $\rightarrow d_2(k)$ est un bruit affectant les mesures 4 et 5

- **Q** Rappeler la forme de calcul du résidu r(k) = Wy(k) insensible à x(k)
- **2** Donner la forme d'évaluation de r(k) en fonction de d(k) et f(k).
- If the set of the s
- Otterminer $\overline{r}(k)$ le plus sensible à f(k) et le moins sensible à d(k)
- **(4)** Donner la forme d'évaluation de $\overline{r}(k)$ en fonction de d(k) et f(k)
- Calculer la valeur du critère J pour r₁(k), r₂(k) et r

 (k). Conclure sur l'amélioration obtenue.
- $\rightarrow~$ Vérifier les résultats avec $\rm Matlab$
Cas d'étude d'un quadricoptère

Espace de parité statique - détection

- Découplage par rapport à certains défauts
 - Modèle : $y(k) = Cx(k) + D_f^+ f^+(k) + D_f^- f^-(k)$
 - ightarrow le résidu doit être le plus sensible aux défauts $f^+(k)$
 - ightarrow le résidu doit être le moins sensible aux défauts $f^-(k)$
 - Résidu obtenu en utilisant un sélecteur

$$\rightarrow r_{+}(k) = v_{+}^{*T}r(k) = v_{+}^{T}WD_{f}^{+}f^{+}(k) + v_{+}^{T}WD_{f}^{-}f^{-}(k) \text{ avec } W \text{ t.q. } WC = 0$$

$$\rightarrow v_{+}^{*} = \arg\min_{v_{+}} \frac{v_{+}^{T}WD_{f}^{-}(D_{f}^{-})^{T}W^{T}v_{+}}{v_{+}^{T}WD_{f}^{+}(D_{f}^{+})^{T}W^{T}v_{+}}$$

• Méthode pour déterminer le sélecteur optimal

1 Trouver W t.q. WC = 0

2 Déterminer les valeurs propres λ du faisceau $(WD_f^-(D_f^-)^T W^T, WD_f^+(D_f^+)^T W^T)$

 ${f 0}$ Déterminer le vecteur propres v^*_+ associé à la plus petite valeur propre λ_{min}

- Intérêt
 - ightarrow si un unique défaut $f^+(k)$ est choisi, le résidu est le plus sensible à ce défaut
 - ⇒ l'utilisation d'un lot de ce type de générateurs de résidus constitue une première approche du problème de localisation

Espace de parité statique - détection

• Exercice (nouvelle matrice C)

•
$$y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \\ y_5(k) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 0 & 2 \end{bmatrix} \times (k) + \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 0 \\ 2 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f_1^-(k) \\ f_2^-(k) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \\ 1 \end{bmatrix} f^+(k)$$

 \rightarrow résidu doit être le plus sensible à $f^+(k)$

 \rightarrow résidu doit être le moins sensible à $f_1^-(k)$ and $f_2^-(k)$

- Trouver W et donner la forme de calcul du résidu r(k) = Wy(k) insensible à x(k)
- **2** Est-il possible de trouver un résidu r(k) insensible à x(k) et $f^{-}(k)$?
- **3** Trouver le résidu $r_+(k)$ le + sensible à $f^+(k)$ et le sensible à $f^-(k)$

 $\rightarrow~$ pour obtenir une solution unique, fixer la seconde composante de v_+^* à 1

Donner la forme d'évaluation du résidu r₊(k) en fonction de f⁺(k) et f⁻(k)
Calculer la valeur du critère J pour r₁(k), r₂(k) et r₊(k). Conclure sur la gualité du résidu obtenu.

Espace de parité statique - isolation

• Expression du résidu dans le cas sans perturbation

•
$$r(k) = Wy(k) = WCx(k) + WD_f f(k)$$

 $\rightarrow x(k) \in \mathbb{R}^n, f(k) \in \mathbb{R}^{m_f}, r(k) \in \mathbb{R}^{p-\operatorname{rang}(C)}, W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times p} \operatorname{t.q.} WC = 0$

- Problème d'isolation
 - Après la détection du défaut (ici, un défaut est détecté quand $r(k) \neq 0$)
 - \rightarrow connaissant r(k), comment déterminer quel défaut s'est produit?
 - \Rightarrow quelle composante, parmi les m_f composantes de f(k), n'est pas nulle?
- Solution
 - Les résidus r(k) se déplacent dans un espace de dimension $p \operatorname{rang}(C)$
 - ightarrow la direction de r(k) est une signature d'un défaut donné
 - Les colonnes de *WD_f* constituent les *m_f* directions vers lesquelles *r*(*k*) est orienté en présence d'un défaut
 - \rightarrow pour isoler le défaut, la direction de r(k) est calculée et comparée aux colonnes de WD_f

Espace de parité statique - isolation

• Expression du résidu dans le cas sans perturbation

•
$$r(k) = Wy(k) = WCx(k) + WD_f f(k), \ x(k) \in \mathbb{R}^n, f(k) = \begin{bmatrix} r_1(k) \\ \vdots \\ r_{m_f}(k) \end{bmatrix} \in \mathbb{R}^{m_f} r(k) \in \mathbb{R}^{p-\operatorname{rang}(C)}$$

 $\rightarrow W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times p} \text{ t.q. } WC = 0, W_{rf} = WD_f \in \mathbb{R}^{(p-n) \times m_f}, W_{rf} = \begin{bmatrix} W_{rf}^{[1]} \cdots W_{rf}^{[m_f]} \end{bmatrix}$

- Méthode d'isolation dans le cas sans perturbation
 - analyse de l'orientation de r(k) par rapport aux directions données par WD_f
 - \Rightarrow étude de la colinéarité de r(k) et des m_f vecteurs $W_{rf}^{[i]} \in \mathbb{R}^{p-rang(C)}$

if r(k) est colinéaire à $W_{rf}^{[i]} \Rightarrow$ défaut f_i isolé

Espace de parité statique - isolation

• Expression du résidu dans le cas sans perturbation

•
$$r(k) = Wy(k) = WCx(k) + WD_f f(k), \ x(k) \in \mathbb{R}^n, f(k) = \begin{bmatrix} r_1(k) \\ \vdots \\ r_{m_f}(k) \end{bmatrix} \in \mathbb{R}^{m_f} r(k) \in \mathbb{R}^{p-\operatorname{rang}(C)}$$

 $\rightarrow W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times p} \text{ t.q. } WC = 0, W_{rf} = WD_f \in \mathbb{R}^{(p-n) \times m_f}, W_{rf} = \begin{bmatrix} W_{rf}^{[1]} \cdots W_{rf}^{[m_f]} \end{bmatrix}$

- Méthode d'isolation dans le cas sans perturbation
 - analyse de l'orientation de r(k) par rapport aux directions données par WD_f
 - $\Rightarrow \underbrace{\text{étude de la colinéarité de } r(k) \text{ et des } m_f \text{ vecteurs } W_{rf}^{[i]} \in \mathbb{R}^{p-\operatorname{rang}(C)}$

if r(k) est colinéaire à $W_{rf}^{[i]} \Rightarrow$ défaut f_i isolé

Cas d'étude d'un quadricoptère

Espace de parité statique - isolation

• Expression du résidu dans le cas sans perturbation

•
$$r(k) = Wy(k) = WCx(k) + WD_f f(k), \ x(k) \in \mathbb{R}^n, \ f(k) = \begin{bmatrix} f_1(k) \\ \vdots \\ f_{m_f}(k) \end{bmatrix} \in \mathbb{R}^{m_f} r(k) \in \mathbb{R}^{p-\operatorname{rang}(C)}$$

 $\rightarrow W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times n} \text{ t.q. } WC = 0, \ W = \begin{bmatrix} W^{[1]} & \cdots & W^{[m_f]} \end{bmatrix}$

- Méthode d'isolation dans le cas sans perturbation
 - Cas particulier : détection de défauts capteurs

•
$$f(k) = \begin{bmatrix} f_1(k) \\ \vdots \\ f_p(k) \end{bmatrix} \in \mathbb{R}^p \Rightarrow 1$$
 défaut par capteur

$$\rightarrow D_f = I_p \Rightarrow W_{rf} = W$$

- \Rightarrow les *p* colonnes de *W* définissent les *p* directions associées aux défauts
- \Rightarrow si *r* est colinéaire à $W^{[i]} \Rightarrow$ défaut capteur sur la *i*^{ème} mesure

Espace de parité statique - isolation

- Expression du résidu dans le cas avec perturbation
 - $r(k) = Wy(k) = WCx(k) + WD_f f(k) + WD_d d(k)$ $\rightarrow r(k) \in \mathbb{R}^{p-\operatorname{rang}(C)}, x(k) \in \mathbb{R}^n, f(k) \in \mathbb{R}^{m_f}, d(k) \in \mathbb{R}^{m_d}, W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times n} \text{ t.q. } WC = 0$ $\rightarrow W_{rf} = WD_f = [W_{rf}^{\mathbb{H}} \cdots W_{rf}^{[m_f]}] \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times m_f}, W_{rd} = WD_d = [W_{rd}^{\mathbb{H}} \cdots W_{rd}^{[m_d]}] \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times m_d}$
- Méthode d'isolation dans le cas avec perturbation
 - orientation de r(k) dépend
 - ightarrow des m_f directions des défauts données par les colonnes W_{rf}
 - ightarrow des m_d directions des perturbations données par les colonnes de W_{rd}

si r(k) est **le plus colinéaire** à $W_{rf}^{[i]} \Rightarrow$ défaut f_i isolé

Espace de parité statique - isolation

- Expression du résidu dans le cas avec perturbation
 - $r(k) = Wy(k) = WCx(k) + WD_f f(k) + WD_d d(k)$ $\rightarrow r(k) \in \mathbb{R}^{p-\operatorname{rang}(C)}, x(k) \in \mathbb{R}^n, f(k) \in \mathbb{R}^{m_f}, d(k) \in \mathbb{R}^{m_d}, W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times n} \text{ t.q. } WC = 0$ $\rightarrow W_{rf} = WD_f = [W_{rf}^{\mathbb{H}} \cdots W_{rf}^{[m_f]}] \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times m_f}, W_{rd} = WD_d = [W_{rd}^{\mathbb{H}} \cdots W_{rd}^{[m_d]}] \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times m_d}$
- Méthode d'isolation dans le cas avec perturbation
 - orientation de r(k) dépend
 - ightarrow des m_f directions des défauts données par les colonnes W_{rf}
 - \rightarrow des m_d directions des perturbations données par les colonnes de W_{rd}

si r(k) est **le plus colinéaire** à $W_{rf}^{[i]} \Rightarrow$ défaut f_i isolé

• Exemple :
$$p - n = 2$$
, $m_f = 3$, $m_d = 2$
• objectif : isoler 1 défaut parmi 3
• 3 directions pour les défauts
 $\rightarrow W_{rf} = \begin{bmatrix} W_{rf}^{[1]} & W_{rf}^{[2]} & W_{rf}^{[3]} \end{bmatrix}$
• 3 directions pour les perturbations
 $\rightarrow W_{rd} = \begin{bmatrix} W_{rd}^{[1]} & W_{rd}^{[2]} \end{bmatrix}$
• ici r est le plus colinéaire à $W_{rf}^{[2]}$
 \Rightarrow défaut f_2 isolé \Rightarrow comment évaluer la colinéarité avec MATLAB?

45 / 76

Static parity space - isolation

Exercice

•
$$y(k) = \begin{bmatrix} y_1(k) \\ y_2(k) \\ y_3(k) \\ y_4(k) \\ y_5(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d_1(k) \\ d_2(k) \end{bmatrix}$$

 $\rightarrow d_1(k)$ est un bruit affectant les mesures 1, 2 et 3

 $\rightarrow d_2(k)$ est un bruit affectant les mesures 4 et 5

- Q Rappeler la forme de calcul du résidu r(k) = Wy(k) insensible à x(k).
 Q Donner la forme d'évaluation de r(k) en fonction de d(k) et f(k) et préciser les valeurs des matrices W_{rd} = WD_d et W_{rf} = WD_f.
- Un défaut se produit à l'instant k = 50, $r(60) = \begin{bmatrix} -2.09 \\ 1.44 \end{bmatrix}$. Isoler le défaut en utilisant une approche graphique.
- **4** Confirmer la conclusion en calculant les angles θ_i .
- \rightarrow Vérifier les résultats en utilisant MATLAB

Static parity space - isolation

- Exercice
 - Prise en compte de l'évolution temporelle de r(k)
 - un autre défaut conduit à la séquence de résidus r(k) ci-dessous

 \rightarrow Quel défaut se produit?

Static parity space - isolation

- Exercice
 - Prise en compte de l'évolution temporelle de r(k)
 - un autre défaut conduit à la séquence de résidus r(k) ci-dessous

 \rightarrow Quel défaut se produit ? $\Rightarrow f_2$ isolé $(r(k) \text{ orienté selon } W_{rf}^{[2]})$

Cas d'étude d'un quadricoptère

Espace de parité statique - récapitulatif

- Modèle : $y(k) = Cx(k) + D_d d(k) + D_f f(k)$, $y \in \mathbb{R}^p, x \in \mathbb{R}^n, d \in \mathbb{R}^{m_d}, f \in \mathbb{R}^{m_f}$
- Résidu : $r(k) = Wy(k) = WCx(k) + WD_dd(k) + WD_ff(k)$
- Insensibilité à l'état : trouver W t.q. WC = 0 $(W \in \mathbb{R}^{(p-\operatorname{rang}(C)) \times n})$
- Sensibilité aux défauts vérifiée a posteriori : colonne i de WD_f non nulle ⇒ défaut f_i détectable avec r(k)
- Robustesse parfaite aux perturbations : trouver W t.q. $W \begin{bmatrix} C & D_d \end{bmatrix} = 0$
- Résidu le pus sensible aux défauts et le moins sensible aux perturbations : $\bar{r}(k) = v^T Wy(k)$ (v obtenue avec le théorème de Gantmacher)
- Isolation : r le plus colinéaire à la colonne i de $WD_f \Rightarrow f_i$ isolé
- Limitations de l'approche de l'espace de parité statique
 → limité à la détection/localisation des pannes capteurs uniquement
 - \rightarrow que faire si W n'existe pas? (pas de redondance directe entre les mesures)
- ⇒ Une solution : utiliser la redondance temporelle entre commandes et mesures à différents instants ⇒ espace de parité dynamique

Espace de parité dynamique - principe

- Modèle • $\Sigma_k \begin{cases} x(k+1) = Ax(k) + Bu(k) + B_d d(k) + B_f f(k) \\ y(k) = Cx(k) + Du(k) + D_d d(k) + D_f f(k) \\ \rightarrow x \in \mathbb{R}^n, y \in \mathbb{R}^p, u \in \mathbb{R}^m, d \in \mathbb{R}^{m_d}, f \in \mathbb{R}^{m_f} \end{cases}$
- Idée
 - utiliser la redondance temporelle liant commandes/mesures à \neq instants
 - \rightarrow mesures y(k) et commandes u(k) collectées sur une fenêtre temporelle
- Modèle sur la fenêtre temporelle [k s, k]

$$Y(k-s,k) = \Phi_U(s)U(k-s,k) + Q_o(s)x(k-s) + \Phi_D(s)D(k-s,k) + \Phi_F(s)F(k-s,k)$$

 $\rightarrow s : \text{taille de la fenêtre temporelle}$ $\rightarrow Y(k-s,k) = \begin{bmatrix} y(k-s) \\ y(k-s+1) \\ \vdots \\ y(k) \end{bmatrix}, U(k-s,k) = \begin{bmatrix} u(k-s) \\ u(k-s+1) \\ \vdots \\ u(k) \end{bmatrix}, D(k,s) = \cdots$ $\rightarrow \text{ exercice : trouver les expressions de } \Phi_U(s), Q_o(s), \Phi_D(s) \text{ et } \Phi_F(s)$ (approche récursive pour déterminer y(k-s), puis y(k-s+1)...)

50 / 76

Espace de parité dynamique - principe

Modèle

$$\Sigma_k \begin{cases} x(k+1) &= Ax(k) + Bu(k) + B_d d(k) + B_f f(k) \\ y(k) &= Cx(k) + Du(k) + D_d d(k) + D_f f(k) \end{cases}$$

• Modèle sur la fenêtre temporelle [k - s, k]

• Modèle sur la fenêtre temporelle [k - s, k]

 $Y(k-s,k) = \Phi_U(s)U(k-s,k) + Q_o(s)x(k-s) + \Phi_D(s)D(k-s,k) + \Phi_F(s)F(k-s,k)$

- Résidu obtenu par combinaison linéaire des commandes et mesures collectées
 - $r(k) = W(Y(k-s,k) \Phi_U(s)U(k-s,k))$ (forme de calcul)
 - \rightarrow tire parti de la redondance temporelle entre *u* et *y* à différents instants
 - \Rightarrow inter-redondance

Remarque

• Des résidus scalaires $\tilde{r}_j(k)$ peuvent être générés en utilisant une unique mesure $y_j(k) \Rightarrow$ auto-redondance

$$\begin{array}{l} \rightarrow \quad \tilde{r}_{j}(k) = \tilde{W}_{j}\left(\tilde{Y}_{j}(k-s,k) - \tilde{\Phi}_{U}^{j}(s)U(k-s,k)\right) \\ \quad \tilde{Y}_{j}(k-s,k) = \tilde{\Phi}_{U}^{j}(s)U(k-s,k) + \tilde{Q}_{o}^{j}(s)x(k-s) + \tilde{\Phi}_{D}^{j}(s)D(k-s,k) + \tilde{\Phi}_{F}^{j}(s)F(k-s,k) \end{array}$$

- $\rightarrow \tilde{\Phi}_{U}^{j}(s), \tilde{Q}_{o}^{j}(s), \tilde{\Phi}_{D}^{j}(s), \tilde{\Phi}_{F}^{j}(s)$ obtenues en remplaçant C,D,D_d,D_f par leur j^{ème} ligne
- ⇒ permet d'aborder le problème de localisation

Cas d'étude d'un quadricoptère

Espace de parité dynamique - détection

- Modèle sur la fenêtre temporelle [k s, k]
 - $Y(k-s,k) = \Phi_U(s)U(k-s,k) + Q_o(s)x(k-s) + \Phi_D(s)D(k-s,k) + \Phi_F(s)F(k-s,k)$
- Forme de calcul

$$r(k) = W(Y(k-s,k) - \Phi_U(s)U(k-s,k))$$

Forme d'évaluation

$$r(k) = WQ_o(s)x(k-s) + W\Phi_D(s)D(k-s,k) + W\Phi_F(s)F(k-s,k)$$

- Insensibilité à l'état
 - r(k) insensible à l'état si W t.q. WQ_o

$$WQ_o(s) = 0$$

$$W$$
 existe si $p(s+1) > \operatorname{rang}(Q_o(s))$

 $\rightarrow \mathcal{W} \in \mathbb{R}^{(p(s+1)-\operatorname{rang}(Q_o(s))) \times p(s+1)}$

ondition d'existence :

→ W déterminée avec la même méthode que pour l'espace de parité statique

Plan Méthode de l'espace de parité Cas d'étude d'un quadricoptère Introduction Méthodes de DLD Espace de parité dynamique - détection Forme d'évaluation • $r(k) = WQ_o(s)x(k-s) + W\Phi_D(s)D(k-s,k) + W\Phi_F(s)F(k-s,k)$ \rightarrow with W s.t. $WQ_{0}(s) = 0$ Sensibilité aux défauts : vérifiée a posteriori • effet des défauts évaluée avec la matrice $W_{rF} = W\Phi_F(s)$ dans le cas sans défaut, le résidu s'écrit • dans le cas sans défaut, le résidu s'écrit $\rightarrow r(k) = \left[W_{rF}^{[1]} \cdots W_{rF}^{[m_f]} \middle| W_{rF}^{[m_f+1]} \cdots W_{rF}^{[2m_f]} \middle| \cdots \middle| W_{rF}^{[sm_f+1]} \cdots W_{rF}^{[(s+1)m_f]} \right] \begin{bmatrix} r_1(k-s) \\ \vdots \\ r_{m_f}(k-s) \\ r_1(k-s) \\ \vdots \\ r_{m_f}(k-s+1) \\ \vdots \\ r_{m_f}(k-s+1) \end{bmatrix}$ f₁(k) $f_{m_c}(k)$ • si un défaut unique constant $f_i(k)$ se produit, après s échantillons : $\to r(k) = W_{rF}^{[i]} f_i(k-s) + W_{rF}^{[m_f+i]} f_i(k-s) + \dots + W_{rF}^{[sm_f+i]} f_i(k-s)$ $= (W_{r_{F}}^{[i]} + W_{r_{F}}^{[m_{f}+i]} + \dots + W_{r_{F}}^{[sm_{f}+i]})f_{i}(k-s)$ f_i fortement détectable $\Leftrightarrow \sum_{i=0}^{s} W_{rE}^{[jm_f+i]} \neq 0$ f_i faiblement détectable $\ \Leftrightarrow \ \exists \ q \leq s \ ext{s.t.} \ \sum_{i=s-a}^s W^{[jm_f+i]}_{rF}
eq 0$

54 / 76

Espace de parité dynamique - détection

- Forme d'évaluation
 - $r(k) = WQ_o(s)x(k-s) + W\Phi_D(s)D(k-s,k) + W\Phi_F(s)F(k-s,k)$
 - ightarrow avec W t.q. $WQ_o(s)=0$
- Robustesse aux perturbations : vérifiée a posteriori
 - effet des perturbations évalué en utilisant $W_{rD} = W \Phi_D(s)$

résidu insensible à d_i si <u>toutes</u> les colonnes $W_{rD}^{[i]}, W_{rD}^{[m_d+i]}, \cdots, W_{rD}^{[sm_d+i]}$ sont nulles

- Robustesse parfaite aux perturbations : contrainte imposée a priori
 - choisir W t.a. $W\Phi_D(s) = 0 \Rightarrow$ choisir W t.q. $W \begin{bmatrix} Q_o(s) & \Phi_D(s) \end{bmatrix} = 0$
 - une telle matrice W existe si $p(s+1) > \operatorname{rang} \left(\begin{bmatrix} Q_o(s) & \Phi_D(s) \end{bmatrix} \right)$
 - ightarrow condition rarement satisfaite
 - $\Rightarrow\,$ recherche du résidu le plus sensible aux défauts et le moins sensible aux perturbations

Cas d'étude d'un quadricoptère

Espace de parité dynamique - détection

- Forme d'évaluation
 - $r(k) = WQ_o(s)x(k-s) + W\Phi_D(s)D(k-s,k) + W\Phi_F(s)F(k-s,k)$
 - ightarrow avec W t.q. $WQ_o(s)=0$

• Résidu le plus sensible aux défauts et le moins sensible aux perturbations

• résidu scalaire obtenu par combinaison linéaire des composantes de r(k)

$$\rightarrow \boxed{\overline{r}(k) = v^T r(k)} = v^T W \Phi_D(s) D(k-s,k) + v^T W \Phi_F(s) F(k-s,k)$$

- ightarrow method to dertermine v^*
 - 1 Déterminer W t.q. $WQ_o(s) = 0$
 - **2** Calculer les valeur propres λ du faisceau $(W\Phi_D(s)\Phi_D^T(s)W^T, W\Phi_F(s)\Phi_F^T(s)W^T)$
 - ${f 0}$ Calculer le vecteur propre v^* associé à la plus petite valeur propre λ_{min}

Introduction Plan Méthodes de DLD 00000 0 000000000 Méthode de l'espace de parité

Espace de parité dynamique - isolation

- Localisation de défauts dans le cas sans perturbation
 - espace de parité statique (rappel)
 - \rightarrow forme d'évaluation du résidu : $r(k) = WD_f f(k)$
 - \rightarrow faute unique $f_i(k) \Rightarrow r(k)$ orienté selon la *i*th colonne de WD_f
 - $\rightarrow f_i(k)$ varie \Rightarrow amplitude de r(k) change mais pas sa direction
 - espace de parité dynamique

$$\rightarrow$$
 forme d'évaluation du résidu :

$$r(k) = W\Phi_F(s)F(k-s,k) = W_{rF}F(k-s,k)$$

$$\rightarrow r(k) = \left[W_{rF}^{[1]} \cdots W_{rF}^{[m_{f}]} \middle| W_{rF}^{[m_{f}+1]} \cdots W_{rF}^{[2m_{f}]} \middle| \cdots \middle| W_{rF}^{[sm_{f}+1]} \cdots W_{rF}^{[(s+1)m_{f}]} \right] \begin{bmatrix} f_{1}(k-s) \\ \vdots \\ f_{m_{f}}(k-s+1) \\ \vdots \\ f_{m_{f}}(k-s+1) \\ \vdots \\ f_{1}(k) \\ \vdots \\ f_{1}(k) \\ \vdots \\ f_{m_{f}}(k) \end{bmatrix}$$

 $\rightarrow f_i(k) \text{ varie} \Rightarrow \text{ amplitude et orientation de } r(k) \text{ varient} \\ (\text{selon les directions } W_{rF}^{[i]}, W_{rF}^{[i+m_f]}, \cdots, W_{rF}^{[i+sm_f]})$

- Localisation de défauts dans le cas sans perturbation
 - Forme d'évaluation du résidu : $r(k) = W\Phi_F(s)F(k-s,k) = W_{rF}F(k-s,k)$

 $\rightarrow r(k) = \left[W_{rF}^{[1]} \cdots W_{rF}^{[m_{f}]} \middle| W_{rF}^{[m_{f}+1]} \cdots W_{rF}^{[2m_{f}]} \middle| \cdots \middle| W_{rF}^{[sm_{f}+1]} \cdots W_{rF}^{[(s+1)m_{f}]} \right] \begin{bmatrix} \frac{f_{1}(k-s)}{f_{m_{f}}(k-s+1)} \\ \frac{f_{m_{f}}(k-s+1)}{f_{1}(k-s+1)} \\ \vdots \\ \frac{f_{m_{f}}(k)}{f_{1}(k)} \\ \vdots \\ \frac{f_{1}(k)}{f_{1}(k)} \\ \vdots \\ f_{m_{f}}(k) \end{bmatrix}$ $f_{i}(k) \text{ varie } \Rightarrow \text{ amplitude et orientation de } r(k) \text{ varies}$ • si $f_i(k)$ constant, s échantillons après apparition du défaut : $\rightarrow r(k) = W_{rE}^{[i]} f_i(k-s) + W_{rE}^{[i+m_f]} f_i(k-s) + \dots + W_{rE}^{[i+sm_f]} f_i(k-s)$ $= (W_{r}^{[i]} + W_{r}^{[i+m_{f}]} + \cdots + W_{r}^{[i+sm_{f}]})f_{i}(k-s)$ sous hyp. de défaut constant, s échantillons après apparition du défaut si r(k) colinéaire à $W_{rF}^{[i]} + W_{rF}^{[i+m_f]} + \dots + W_{rF}^{[i+sm_f]} \Rightarrow$ défaut f_i isolé

58 / 76

Espace de parité dynamique - taille de la fenêtre

• Forme d'évaluation sur la fenêtre temporelle [k - s, k]

•
$$r(k) = WQ_o(s)x(k-s) + W\Phi_D(s)D(k-s,k) + W\Phi_F(s)F(k-s,k)$$

- Taille de la fenêtre dépend du cahier des charges
 - insensibilité à l'état
 - W t.q. $WQ_o(s) = 0$ existe si $p(s+1) > rang(Q_o(s))$
 - \rightarrow choix itératif de *s* (*s* augmenté jusqu'à satisfaire cette condition \Rightarrow *s*_{min})
 - insensibilité aux perturbations

• W t.q. $W \begin{bmatrix} Q_o(s) & \Phi_D(s) \end{bmatrix} = 0$ existe si $p(s+1) > \operatorname{rang} \left(\begin{bmatrix} Q_o(s) & \Phi_D(s) \end{bmatrix} \right)$

- \rightarrow choix itératif de s
- résidu le plus sensible aux défauts et le moins sensible aux perturbations

•
$$\bar{r}(k) = \mathbf{v}^T r(k)$$
 avec \mathbf{v} minimisant $J(s, \mathbf{v}) = \frac{\|\mathbf{v}^T W \Phi_D(s)\|_2^2}{\|\mathbf{v}^T W \Phi_F(s)\|_2^2}$

- \rightarrow critère J(s, v) décroît quand s augmente
- $\rightarrow\,$ augmenter s jusqu'à satisfaire la condition de robustesse

Espace de parité dynamique - Exercice

Méthodes de DLD

Introduction

Plan

$$\begin{aligned} x_1(k+1) \\ x_2(k+1) \end{bmatrix} &= \begin{bmatrix} 0.8 & 0.2 \\ 0 & 0.9 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u(k) + \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} d_1(k) \\ d_2(k) \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0.1 & 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \\ f_3(k) \end{bmatrix} \\ \begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(k) \\ f_2(k) \\ f_3(k) \end{bmatrix}$$

$$\begin{bmatrix} y_1(k) \\ y_2(k) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d_1(k) \\ d_2(k) \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_1(k) \\ f_2(k) \\ f_3(k) \end{bmatrix}$$

- \rightarrow $f_1(k)$ défaut actionneur, $f_2(k)$ et $f_3(k)$ défauts capteurs
- $\rightarrow d_1(k)$ perturbation sur l'état, $d_2(k)$ bruit de mesure
- Est-il possible d'appliquer la méthode de l'espace de parité statique ?
- Onner la taille minimale de fenêtre s_{min} t.q. un résidu insensible à x existe

Méthode de l'espace de parité

- Trouver W et donner la forme de calcul du résidu en fonction des commandes et mesures collectées.
- Onner la forme d'évaluation dépendant des défauts et perturbations. Indiquer les directions des défauts capteurs et actionneurs.
- **3** instants après un défaut unique, $r(k) = \begin{bmatrix} 0.02 \\ -0.2 \end{bmatrix}$. Quel défaut s'est produit ?

Cas d'étude d'un quadricoptère

• Simulation en présence de bruits blancs et d'un défaut constant f_1

Plan du cours

Plan

1) Vue d'ensemble des méthodes de détection et localisation de défauts

- Tâches de diagnostic (définitions)
- Approches basées sur la surveillance de signaux
- Redondance matérielle
- Redondance analytique

Méthode de l'espace de parité

- Rappel sur les systèmes échantillonnés
- Espace de parité statique
- Espace de parité dynamique

3 Cas détude : DLD pour un quadricoptère

- Modélisation
- Synthèse de la loi de commande

Introduction	Plan	Méthodes de DLD	Méthode de l'espace de parité	Cas d'étude d'un quadricoptère
				000000000000000000000000000000000000000

Modélisation

- Rappel sur le formalisme de Newton-Euler :
 - dans un repère inertiel ${\mathcal I}$

$$m \cdot \frac{d\vec{v}}{dt}\Big|_{\mathcal{I}} = \sum_{i} \vec{F}_{i}^{\mathcal{I}}$$
$$\frac{d\vec{\sigma}}{dt}\Big|_{\mathcal{I}} = \frac{d(I\vec{\Omega})}{dt}\Big|_{\mathcal{I}} = \sum_{i} \vec{M}_{i}^{\mathcal{I}}$$

• dans un repère non inertiel ${\mathcal B}$

$$m \cdot \frac{d\vec{v}}{dt} \bigg|_{\mathcal{B}} + \vec{\Omega} \wedge m\vec{v} = \sum_{i} \vec{F}_{i}^{\mathcal{B}}$$
$$\frac{d\vec{\sigma}}{dt} \bigg|_{\mathcal{I}} = \frac{d(I\vec{\Omega})}{dt} \bigg|_{\mathcal{B}} + \vec{\Omega} \wedge I\vec{\Omega} = \sum_{i} \vec{M}_{i}^{\mathcal{B}}$$

m - masse $\vec{\sigma}$ - moment angulaire I - matrice d'inertie $\vec{\Omega}$ - vitesse angulaire de \mathcal{B} par rapport à \mathcal{I}

Introd	
0000	

Méthodes de DLD 00000000000 Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Repères utilisés

 repère inertiel (Terre, NED – North East Down) :

$$\left(\mathcal{I}, x^{\mathcal{I}}, y^{\mathcal{I}}, z^{\mathcal{I}}\right)$$

• repère non inertiel (body, drone) :

$$\left(\mathcal{B}, x^{\mathcal{B}}, y^{\mathcal{B}}, z^{\mathcal{B}}\right)$$

Introd	
0000	

Méthodes de DLD 00000000000 Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Angles d'Euler

Plan

• Passage d'un vecteur du repère body vers le repère inertiel :

$$X^{\mathcal{I}} = R_z(\psi)R_y(\theta)R_x(\phi)X^{\mathcal{B}}$$
(1)

• Orthogonalité : $R_a(\eta)^{-1} = R_a(-\eta) = R_a(\eta)^T, \ \forall a \in \{x, y, z\}$

Propriétés de la matrice de rotation

• Matrice de rotation du repère body vers le repère inertiel

$$R_{\mathcal{B}}^{\mathcal{I}} = R_z(\psi)R_y(\theta)R_x(\phi)$$
(2)

et $X^{\mathcal{I}} = R^{\mathcal{I}}_{\mathcal{B}} X^{\mathcal{B}}$.

• Transformation inverse :

$$X^{\mathcal{B}} = R_x(-\phi)R_y(-\theta)R_z(-\psi)X^{\mathcal{I}}$$
(3)

et

$$R_{\mathcal{I}}^{\mathcal{B}} = R_{x}(-\phi)R_{y}(-\theta)R_{z}(-\psi) = \left(R_{\mathcal{B}}^{\mathcal{I}}\right)^{-1}$$
(4)
• Alors : $\left(R_{\mathcal{B}}^{\mathcal{I}}\right)^{-1} = \left(R_{\mathcal{B}}^{\mathcal{I}}\right)^{T}$ et $\left(R_{\mathcal{I}}^{\mathcal{B}}\right)^{-1} = \left(R_{\mathcal{I}}^{\mathcal{B}}\right)^{T}$

$$R_{\mathcal{B}}^{\mathcal{I}} = \begin{bmatrix} c\psi c\theta & -s\psi c\phi + c\psi s\theta s\phi & s\psi s\phi + c\psi s\theta c\phi \\ s\psi c\theta & c\psi c\phi + s\psi s\theta s\phi & -c\psi s\phi + s\psi s\theta c\phi \\ -s\theta & c\theta s\phi & c\theta c\phi \end{bmatrix}$$
(5)

• Forces principales agissant sur le drone

• Gravité $\vec{G}^{\mathcal{I}} = \begin{bmatrix} 0\\0\\mg \end{bmatrix}$ • Poussée des moteurs $\vec{F}_i^{\mathcal{B}} = \begin{bmatrix} 0\\0\\-k\omega_i^2 \end{bmatrix}$, $\forall i \in 1, \dots 4$ (ω_i = vitesse de

rotation du moteur *i*)

• Forces aérodynamiques négligées (faibles dans le cas des multicoptères)

On obtient

$$m\vec{a}^{\mathcal{I}} = \vec{G}^{\mathcal{I}} + R^{\mathcal{I}}_{\mathcal{B}} \sum_{i=1}^{4} \vec{F}^{\mathcal{B}}_{i}$$
(6)

Cas d'étude d'un quadricoptère

Introduction Plan Méthodes de DLD Méthode de l'espace de parité coococo

Cas d'étude d'un quadricoptère

PFD en rotation (repère body)

• Moments agissant sur le drone

$$\vec{M^{B}} = \begin{bmatrix} lk(\omega_{4}^{2} - \omega_{2}^{2}) \\ lk(\omega_{1}^{2} - \omega_{3}^{2}) \\ d(\omega_{2}^{2} + \omega_{4}^{2} - \omega_{1}^{2} - \omega_{3}^{2}) \end{bmatrix}$$

On obtient

$$d\frac{d\vec{\Omega}}{dt} = -\vec{\Omega} \wedge I\vec{\Omega} + \vec{M}^{\mathcal{B}}$$
 (7)

• Dans le repère drone

$$I = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}$$

68 / 76

(8)

Linéarisation du comportement dynamique de l'engin

- Définition du centre de gravité comme r.
- Le quadricoptère est linéarisé autour d'un mode de vol stationnaire $\phi = 0$, $\theta = 0$, $\psi = \psi_0$, x, y, z = const., $\dot{x}, \dot{y}, \dot{z} = 0$, $\dot{\phi} = \dot{\theta} = \dot{\psi} = 0$.
- En mode de vol stationnaire et en considérant quatre moteurs identiques

$$\omega_0 = \sqrt{\frac{mg}{4k}}$$

• Introduisons les petites variations suivantes

$$\Delta \phi, \ \Delta \theta, \ \Delta \omega$$

Linéarisation du comportement dynamique de l'engin

 \bullet D'après le PFD en translation appliqué dans le repère inertiel ${\cal I}$

$$m\begin{bmatrix} \ddot{x}\\ \ddot{y}\\ \ddot{z}\end{bmatrix} = \begin{bmatrix} 0\\ 0\\ mg \end{bmatrix} + R_{\mathcal{B}}^{\mathcal{I}}\begin{bmatrix} 0\\ 0\\ -4k\omega^2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ mg \end{bmatrix} - \begin{bmatrix} s\psi s\phi + c\psi s\theta c\phi\\ s\psi s\theta c\phi - c\psi s\phi\\ c\theta c\phi \end{bmatrix} 4k\omega^2$$

• En considérant un vol stationnaire aux petites perturbations, les équations précédentes deviennent

$$m \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix} - \begin{bmatrix} s\psi\Delta\phi + c\psi\Delta\theta \\ s\psi\Delta\theta - c\psi\Delta\phi \\ 1 \end{bmatrix} 4k(\omega_0 + \Delta\omega_F)^2$$
(9)

• Après simplification des termes en $\mathcal{O}(\Delta^2)$

$$\begin{cases} \ddot{x} = -\frac{1}{m} \left(s\psi \Delta \phi + c\psi \Delta \theta \right) 4k\omega_0^2 = -g \left(s\psi \Delta \phi + c\psi \Delta \theta \right) \\ \ddot{y} = -\frac{1}{m} \left(s\psi \Delta \theta - c\psi \Delta \phi \right) 4k\omega_0^2 = -g \left(s\psi \Delta \theta - c\psi \Delta \phi \right) \\ \ddot{z} = \frac{1}{m} \left(mg - 4k(\omega_0^2 + 2\omega_0 \Delta \omega_F) \right) = -\frac{8k\omega_0}{m} \Delta \omega_F \end{cases}$$
(10)

• Schéma de commande proposé¹

- Dans le schéma précédent
 - x^d , y^d , z^d , et ψ^d sont les consignes de position et d'angle de lacet
 - x^t(t), y^t(t), z^t(t), et ψ^t(t) sont les trajectoire que doit suivre le quadricoptère.

^{1.} Schéma partiellement inspiré de Manish Kumar, *Quadcopter dynamic modeling and control*, transparents présentés à l'IMA, 2017.

• Le bloc *position control* calcule d'abord $\Delta \ddot{x}$, $\Delta \ddot{y}$, $\Delta \ddot{z}$:

$$\begin{cases} \Delta \ddot{x} = \ddot{x}^{t} + H^{\ddot{x}}_{pid}(x^{t} - x) \\ \Delta \ddot{y} = \ddot{y}^{t} + H^{\ddot{y}}_{pid}(y^{t} - y) \\ \Delta \ddot{z} = \ddot{z}^{t} + H^{\ddot{z}}_{pid}(z^{t} - z) \end{cases}$$
(11)

• Ensuite, en utilisant (10)

$$\begin{cases} \Delta \phi = -\frac{1}{g} \left(s\psi \Delta \ddot{x} - c\psi \Delta \ddot{y} \right) \\ \Delta \theta = -\frac{1}{g} \left(c\psi \Delta \ddot{x} + s\psi \Delta \ddot{y} \right) \\ \Delta \omega_F = -\frac{m}{8k\omega_0} \Delta \ddot{z} \end{cases}$$
(12)

Méthodes de DLD 00000000000 Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Asservissement en attitude

• Le bloc attitude control calcule $\Delta \omega_{\phi}$, $\Delta \omega_{\theta}$, $\Delta \omega_{\psi}$ avec

$$\begin{cases} \Delta \omega_{\phi} = H^{\phi}_{pid}(\Delta \phi - \phi) \\ \Delta \omega_{\theta} = H^{\theta}_{pid}(\Delta \theta - \theta) \end{cases}$$
(13)

et

$$\Delta\omega_{\psi} = H^{\psi}_{pid}(\psi^t - \psi) \tag{14}$$

73 / 76

Comportement dynamique des moteurs

• Découplage des entrées de commande

$$\begin{bmatrix} \Delta\omega_{F} \\ \Delta\omega_{\phi} \\ \Delta\omega_{\theta} \\ \Delta\omega_{\psi} \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \\ 0 & -2kl\omega_{0} & 0 & 2kl\omega_{0} \\ 2kl\omega_{0} & 0 & -2kl\omega_{0} & 0 \\ -2d\omega_{0} & 2d\omega_{0} & -2d\omega_{0} & 2d\omega_{0} \end{bmatrix} \begin{bmatrix} \Delta\omega_{1} \\ \Delta\omega_{2} \\ \Delta\omega_{3} \\ \Delta\omega_{4} \end{bmatrix}$$
(15)
$$\iff \begin{bmatrix} \Delta\omega_{1} \\ \Delta\omega_{2} \\ \Delta\omega_{3} \\ \Delta\omega_{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{1}{4kl\omega_{0}} & -\frac{1}{8d\omega_{0}} \\ 1 & -\frac{1}{4kl\omega_{0}} & 0 & \frac{1}{8d\omega_{0}} \\ 1 & 0 & -\frac{1}{4kl\omega_{0}} & -\frac{1}{8d\omega_{0}} \\ 1 & \frac{1}{4kl\omega_{0}} & 0 & \frac{1}{8d\omega_{0}} \end{bmatrix} \begin{bmatrix} \Delta\omega_{F} \\ \Delta\omega_{\phi} \\ \Delta\omega_{\theta} \\ \Delta\omega_{\psi} \end{bmatrix}$$
(16)

- Les forces de poussées sont calculées en utilisant : $k(\omega_0 + \Delta \omega_i)^2$
- Les moments sont calculés en utilisant : $d(\omega_0 + \Delta \omega_i)^2$

Synthèse d'une loi de commande PID

Méthodes de DLD

• Fonction de transfert d'une loi de commande PID

$$H_{pid}(s) = C_0 C_i(s) C_d(s) \tag{17}$$

avec

Introduction

Plan

$$C_i(s) = \frac{1 + s/\omega_i}{s/\omega_i} \text{ and } C_d(s) = \frac{1 + s/\omega_i}{1 + s/\omega_h}$$
(18)

Méthode de l'espace de parité

- Entrées
 - G(s) modèle linéaire du procédé
 - ω_u pulsation au gain unité de la boucle ouverte (rad/s)
 - M_{ϕ} phase de marge désirée (rad)

Cas d'étude d'un quadricoptère

Introduction Plan Méthodes de DLD Méthode de l'espace de parité

Cas d'étude d'un quadricoptère

Synthèse d'une loi de commande PID

Calculs

$$\begin{aligned} & \omega_i = \omega_u / 10 \\ & \partial \rho_u = |C_i(j\omega_u)| \cdot |G(j\omega_u)|, \ \phi_u = \arg(C_i(j\omega_u)) + \arg(G(j\omega_u)) \\ & \Theta_m = M_\phi - pi - \phi_u \\ & a = \frac{1 + \sin(\varphi_m)}{1 - \sin(\varphi_m)}, \ w_l = \frac{w_u}{\sqrt{a}}, \ w_h = w_u \sqrt{a} \\ & \Theta_0 = \frac{1}{\sqrt{a}\rho_u} \end{aligned}$$

• Modèles linéaires monovariables pour la synthèse duPID

$$egin{aligned} & \mathcal{H}_{\phi}(s) = rac{1}{l_{xx}s^2} & \mathcal{H}_{ heta}(s) = rac{1}{l_{yy}s^2} & \mathcal{H}_{\psi}(s) = rac{1}{l_{zz}s^2} \ & \mathcal{H}_{x}(s) = rac{1}{s^2} & \mathcal{H}_{y}(s) = rac{1}{s^2} & \mathcal{H}_{z}(s) = rac{1}{s^2} \end{aligned}$$