Propagation in coaxial
transmission lines

COAXIAL CABLE

foil shield

dielectrique




Connectors

Les connecteurs présentent une grande varieté de formes et de
tailles. En plus de types standard, les connecteurs peuvent étre de
polarité inverse (sexes inversés) ou de filetée inverse.
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Adaptators and Pigtails

Les adaptateurs et pigtails sont utilisés pour interconnecter les
difféerents types de cables ou de dispositifs.

N male to N male N female to N female SMA male to TNC male

SMA female to N male

| U.FL to RP-TNC
\ male pigtail ¢ U.FL to N male pigtail
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Losses

La perte (ou atténuation) d'un cable coaxial dépend de la
construction du cable et la frequence de fonctionnement. Le
montant total de la perte est proportionnelle a la longueur
du cable.

type de cable diametre att;é.r;ugtli_clazn a attiguzéciﬁ; a
RG-58 4.95 mm 0.846 dB/m |.472 dB/m
RG-213 10.29 mm 0.475 dB/m 0.829 dB/m

LMR-400 10.29 mm 0.217 dB/m 0.341 dB/m
LDF4-50A |6 mm 0.118 dB/m 0.187 dB/m
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Case |:L<<A\

Generator

L<<A

Load




Orders of magnitudes

Let’s look at some examples. The electricity supplied to households
consists of high power sinusoidal signals, with frequency of 60Hz
or 50Hz, depending on the country. Assuming that the insulator
between wires is air (¢ ~ gp), the wavelength for 60Hz is:

8
p= € 20T S 05108 m = 5,000

f 60

which is the about the distance between S. Francisco and Boston!

Let’s compare to a frequency in the microwave range, for instance
60 GHz. The wavelength is given by

8
= € =207 1073 = 5.0 mm

f 60x10’

which is comparable to the size of a microprocessor chip.

Which conclusions do you draw?
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Case 2 : L>>A

Generator

Load




The simplest circuit problem that we can study consists of a
voltage generator connected to a load through a uniform
transmission line. In general, the impedance seen by the generator
is not the same as the impedance of the load, because of the

presence of the transmission line, except for some very particular
cases:

Zin — ZR Zin
> | Transmission line
only if
A

LGi [ n = integer ]

Our first goal is to determine the equivalent impedance seen by the
generator, that is, the input impedance of a line terminated by the
load. Once that is known, standard circuit theory can be used.
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2. Looking for an equivalent network

Load

Generator

Transmission line

Generator




L dz

Line equivalent network

R dz L dz R dz
Cdz G dz Cdz

—a

dz | dz

The impedance parameters L, R, C, and G represent:

Each cell of the distributed circuit will have impedance elements
with values: Ldz, Rdz, Cdz, and Gdz, where dz is the infinitesimal

L = series inductance per unit length
R = series resistance per unit length

C = shunt capacitance per unit length
G = shunt conductance per unit length.

length of the cells.



Without losses

L dz
I (2) m I (z)+dl
V (z) C dz I V(z)+dV




Signal propagation is quantified in terms of the
solution of the so-called Telegrapher’s equations

/ ::I:—jcoCV
V4
a2y dl 2
dz Z
2
"ZI:_,-@C‘;V: 0C joL I=—o* LCT
dz Z

\ v —joL 1

dz
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The general solution for the voltage equation is

V(z)=V'e P2+ 1 elb?

where the wave propagation constant is

Bza)\/ﬁ’



We have the following useful relations:

B_Zn_an_ ®
A Vo Vp
=2 Scr = :(D\/SO ”0\/81/ Hp =WyER

Here, A = p/f is the wavelength of the dielectric medium
surrounding the conductors of the transmission line and

1 1

V. = —
P \/8081'“0“1* \/a

is the phase velocity of an electromagnetic wave in the dielectric.

As you can see, the propagation constant 3 can be written in many
different, equivalent ways.



The current distribution on the transmission line can be readily
obtained by differentiation of the result for the voltage

z_V=—iBV+e‘jBZ+jBVefﬁZ=—ij 1
Z

which gives
1(z) = \/E(V"e—jﬁl _ V—ejBZ) _ ZL(VJre_jBZ _ V—ejBZ)
0

The real quantity

is the “characteristic impedance” of the loss-less transmission line.
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With losses

L dz R dz

I (2)+dl

V(z)+dV




Telegrapher’s equations with losses

d—I=—(jooC+ G)V
/ dz
) [’
%/z—(ij+R)d—I=(jooL+R)(jooC+ G)V
dz dz
2
d—I=—(jcoC+ G)ﬂ/z(jcoC+ G)(joL+ R)I
dz> dz
ﬂ/=—(j(>oL+R)I
dz

with the “characteristic impedance” of the lossy transmission line

7 (joL + R) <:| Note: the characteristic
Al G) impedance i lex !
0 (joC+ impedance is now complex
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Common mistakes

For both loss-less and lossy transmission lines

the characteristic impedance does not depend on the line length

but only on the metal of the conductors, the dielectric material
surrounding the conductors and the geometry of the line cross-

section, which determine L, R, C, and G.

One must be careful not to interpret the characteristic impedance
as some lumped impedance that can replace the transmission line
in an equivalent circuit.

This is a very common mistake!

Zy Zy = Zy Zr
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3. Propagation in a line

We have obtained the following solutions for the steady-state
voltage and current phasors in a transmission line:

Loss-less line Lossy line
V(z) = Ve P? L ye/P? V(z)=VTe 7" +V e!”
1 1

I(Z)=Z—O(V+e_jBZ—V_ejBZ) [(Z)ZZ—O(V+6_YZ_V_6'YZ)
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Generator

General case

Load

Transmission line

Generator

Equivalent Load




Before we consider the boundary conditions, it is very convenient
to shift the reference of the space coordinate so that the zero
reference is at the location of the load instead of the generator.
Since the analysis of the transmission line normally starts from the
load itself, this will simplify considerably the problem later.

New Space Coordinate

We adopt a new coordinate d = — z, with zero reference at the load
location. The new equations for voltage and current along the lossy
transmission line are

Loss-less line Lossy line
v(dy=vtePd sy Pl vidy=vte' sy e
1 ; _ 1 _
I(d)=(V+eJBd—V e JBd) [(d)=(V+eyd—V e yd)
Zy Zo
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At the load (d = 0) we have, for both cases,
Viy=V"+V"

1(0) =ZIO(V+ v

For a given load impedance Z;, the load boundary condition is
V(0)=Z2g1(0)

Therefore, we have

vt =R (v oy
Zg

from which we obtain the voltage load reflection coefficient

Vo _ZR_ZO
V+ ZR+ZO

I'p=

24



We can introduce this result into the transmission line equations as

Loss-less line Lossy line
(@) =P (1 Y rdy =1 (14T e
pt jBd . Tt vd -
IW=" 5 (1-Tee P | lrdy =" (1-Tge 1)
Zy Zg

At each line location we define a Generalized Reflection Coefficient

I(d)=Tp ¢ 2/Pd r(d)=Tp e 2"

and the line equations become

v(d)=rte/Pd(1+T(d)) V(d)=r+e'd (1+T(d))
+ jBd + vd

Id="0-T@)|  |1d)="F

2 2y

(1-T(d))
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We define the line impedance as

Z7(d) = rd) _ ~ 1+1°(d)

1(d) " 1-T(d)

A simple circuit diagram can illustrate the significance of line
impedance and generalized reflection coefficient:

A
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If you imagine to cut the line at location d, the input impedance of
the portion of line terminated by the load is the same as the line
impedance at that location “before the cut”. The behavior of the line

on the left of location d is the same if an equivalent impedance with
value Z(d) replaces the cut out portion. The reflection coefficient of

the new load is equal to I'(d)

ZReq 0
Lo =Hd) =777
0

Req

If the total length of the line is L, the input impedance is obtained
from the formula for the line impedance as

v, _V(@L) _ , 1+I(L)
" (L) °1-T(L)

mn
The input impedance is the equivalent impedance representing the

entire line terminated by the load.
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The characteristic impedance of the low-loss line is a real quantity
for all practical purposes and it is approximately the same as in a
corresponding loss-less line

R+ jol |L
ZO = - SN
G+ joC NC

and the phase velocity associated to the wave propagation is

1
.

(€))
P JLC

BUT NOTE:

In the case of the low-loss line, the equations for voltage and
current retain the same form obtained for general lossy lines.
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Again, we obtain the loss-less transmission line if we assume
R=0 G=0

This is often acceptable in relatively short transmission lines, where
the overall attenuation is small.

As shown earlier, the characteristic impedance in a loss-less line is
exactly real

L
To= .=
07N

while the propagation constant has no attenuation term

Y =J(joL)joC) = joLC = jB

The loss-less line does not dissipate power, because o = 0.
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For all cases, the line impedance was defined as

AR 5 1+1°(d)
1@ Yi1-r@

Z(d)

By including the appropriate generalized reflection coefficient, we
can derive alternative expressions of the line impedance:

A) Loss-less line

1+ pe2/Pd , Zp+ jZtan(Bd)

Z(d)= Z =7
Y1-T pe 2/Pd Y jZg tan(Bd)+ Z,

B) Lossy line (including low-loss)
1+ FRe_zyd _7 ZR + ZO tanh(y d)
1T e 24 70 Zp tanh(y d)+ Z,

Z(d)= Z,
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4. Maximal power transmission

Z in

Generator

Transmission line

%
ZG = Zin for maximum power transfer
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The characteristic impedance of the loss-less line is real and we
can express the power flow, anywhere on the line, as

<P(d,r>>=§Re{V<d> ')}

- % Re {V%fﬁd (1 +rRe‘fzﬁd)

i(V*)*e‘de(l—r Re‘fzﬁd)*}

Zg
1 2 1 2
N A VT
27, 27,
Incident wave Reflected wave

This result is valid for any location, including the input and the load,
since the transmission line does not absorb any power.
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Particular cases

Zp —> 0 (SHORT CIRCUIT)

The load boundary condition due to the short circuitis }7(0) =0
= V(d=0)=V"eP1+T4 e /2P0
=V "A+TR)=0

— FR=—1
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Particular cases

Zp —> o (OPEN CIRCUIT)

Oo—————— )

Zy ZRr —> ©

Oo—i—)

The load boundary condition due to the open circuitis 7 (0) =0

V—I—

= I(d = 0)=Z_eiBO(1_rR e J2B0)
0
V+
=—(1-Tg)=0
Zo( R)

= FR4:1



Particular cases

Zp =7, (MATCHED LOAD)

Z() ZR =Z0

The reflection coefficient for a matched load is

_Lr—4y Ly—Z4 _

I'p 0 | noreflection!

Zp+Zy Zy+Z
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Particular cases

Short circuited transmission line — Fixed frequency

L L=20 Z;, =0 short circuit
0<L<— Im{Z;,} >0 inductance
A N

L = Z Ly > © open circuit

j< L < ZZV Im{Z;,} <0 capacitance
A Lo

L = 5 Z;,, =0 short circuit
§< L < 34/1 Im{Z;,} >0 inductance
= 34/1 Ly > © open circuit

3 _
> < L<A Im{Z;,} <0 capacitance




Particular cases

Open circuit transmission line — Fixed frequency

L L=0 Z;y —> © open circuit
0<L<~— Im{Z;,} <0 capacitance
A N
L= 1 Z;,, =0 short circuit
;1< L < i Im{Z;,} >0 inductance
A -
L = E Ly > © open circuit
i< L < :Tb Im{Z;,} <0 capacitance
L= ? Z;,, =0 short circuit
34 :
4< L<A Im{Z;,} >0 inductance
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5. Transient propagation

The characteristic impedance dictates the
amplitude of the voltage waveform launched
on the line

Ry 1'(0.)

—>
V*(0,r) P

’ To infinity (or matched)
.

V*(0,) = Z,I*(0,1) Z, +R,
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Discontinuities in the characteristic iImpedance
of a transmission line give rise to reflections

s ] At the junction it is:
Zo: Zoo V=V 4y =V, =V
I -
A S B e S A (1 I A A
4—(‘/_9 I_) ZOI ZOZ
\ | . . Zy—Zo |
Vv =IVv" v =Tv"| Reflection Coefficient: I'=—2—"Y
_ it Ly +2,,
I = Voo and I++ _ 4 ( 7 ;
- Z, a Z,, Transmission Coefficient: 7 = 02
) Z02 +ZOI )

Maintaining a fairly constant value of the characteristic impedance
along an interconnect path is essential for reflection suppression.



Source and load impedances impact transmission line
performance of the interconnect

@S Z(1 Z Z,(9

= —

Fs(f):
\

Source reflection coefficient\

ﬁoad reflection coefficient: \
Zs(f) =2, FL(f):ZL(f)_ZO

Z(f)+Z, Z,(f)+Z,

Load transmission coefficient:

T,(f)=1+T,(f) = —=2:)

Z.(N+7,
\ _
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Example: Unterminated interconnect (Z,=) driven by high
source impedance driver with Zg>>27, (e.g. unbuffered CMOS)

Source (' = 1) Load (T =1)
Excitation: Step Pulse of amplitude V,
v+ _
V=V, 2 <<V, T :le
_______________________________________________ _=d/V ZS+Z() ZS+Z()
. (One-way 7 _7
FLV Delay) FL — L 0 _ 1, TL — 2
Z, +Z,
________________________________________________ 2T /
IS I, t V,(t) Steady-state value V
------------------------------------------------ 37 Slow response
I Il V
ListL BV+
e AT |~4V+
ty Bounce diagram v o2V
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Example: Unterminated interconnect (Z,=) driven by low

source impedance driver

with Zs<Z, (e.g. ECL or strong TTL)

= — Load F =1
Source (I's ~ 1) =1 Excitation: Step Pulse of amplitude V,; Z, =7Z;
v vy Ty =54 075
Zi+7Z, 8 Zs+27,
________________________________________________ T=d/v 7 _g
(One-way _“L % 1. T =2
1N B =L 1=
L Delay) L Z 47, L
A
________________________________________________ 2T/ V() Overshoot & RII‘IgI@
Il V*=-0.75 W 2V*
1.625V+*
_______________________________________________ 3T R
gy vy v+ =-0.75 Steady-
0.5V# State: V,
e 4T ,
Ly Bounce diagram Vot T 3T 5T

’/
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