

MODULE CONS10/CONS11 CONSTRUCTION DURABLE EVALUATION ENVIRONNEMENTALE

Philippe Lagière, responsable du module <u>plagiere@u-bordeaux.fr</u>

Intervenants

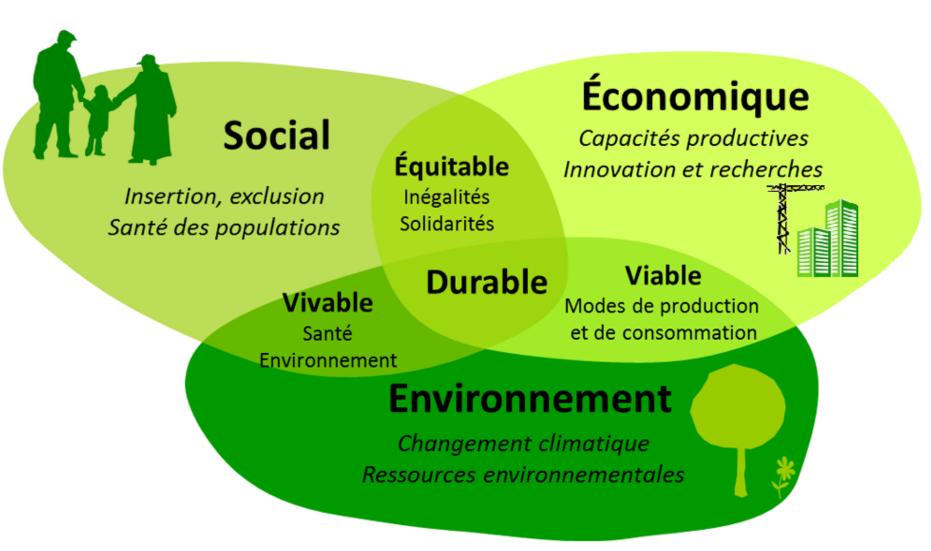
- Ryad Bouzouidja
- Lisa Monteiro
- Saed Raji
- Thomas Recht
- Plus intervenants séance SEVE / ROUTES Eurovia, Département-Gironde

Tous les documents utiles sont disponibles sur Moodle Les rapports d'études de cas devront être déposés sur moodle

155

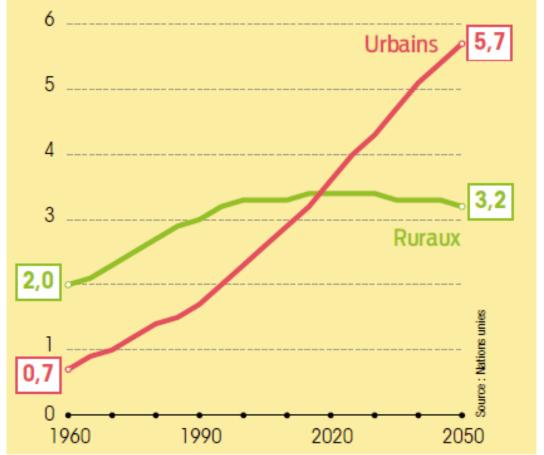
UE42	Pôle Copetru 'ion	30h 6CM - 8TD - 16TP	
M4204C	one ruction durable	Positionnement : S4	

Objectifs:


Choisir des solutions constructive intégrant les critères de la construction durable, respectant les règles de construction et environnementales ainsi que les contraintes économiques. Ce module concerne les ouvrages de travaux publics et de bâtiment, aussi bien en construction neuve qu'en réhabilitation.

PLAN de la séance introductive

- 1) Notions générales Développement & construction durables
- 2) Energie & Environnement : des enjeux aux actions
- 3) En France, orientations et engagements pour la construction durable
- 4) Les principes de l'Analyse de Cycle de Vie, du produit au bâtiment
- 5) Base de données environnementales : Fiches FDES & PEP


1 Notions générales Développement & Construction Durables

Les 3 piliers pour un Développement Durable ...

Un enjeu : de + en + d'urbains et de métropoles

- 2007 : population urbaine > population rurale
- 2030 : 60 % d'habitants urbains sur la planète
- Multiplication des mégapoles (plus de 10 millions d'habitants) :
 28 aujourd'hui vers 41 en 2030.

Quels leviers pour une « ville durable »?

Développer des infrastructures durables (routes, équipements, bâtiments)

Fournir des énergies propres, bas-carbone et performantes

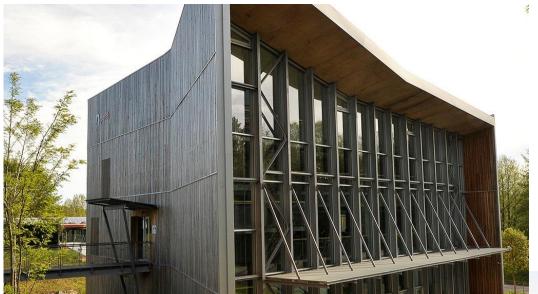
Construire des bâtiments bioclimatiques et économes en ressources

Agir pour la santé et le bien-être des habitants

Rafraichir & végétaliser au cœur des villes

Protéger les espaces publics et les villes

Connecter les transports multi-modaux et développer les mobilités douces



Charte Aalborg — Les villes durables européennes

« ... ont un rôle essentiel à jouer pour faire évoluer les habitudes de vie, de production et de consommation, et les structures environnementales ».

ANALYSE DE PROJETS En tertiaire ou en résidentiel

Bâtiment Nobatek – Anglet (64) certifié <u>Haute Qualité Environnementale</u>

Prototype BAITYKOOL SOLAR-DECATHLON 2018 Dubaï /Emirats Arabes Unis

QUELLE DEMARCHE environnementale et principes de construction durable ? Relever des points précis à l'aide des vidéos présentées (sur moodle)

ANALYSE DE PROJETS En NEUF ou en RENOVATION

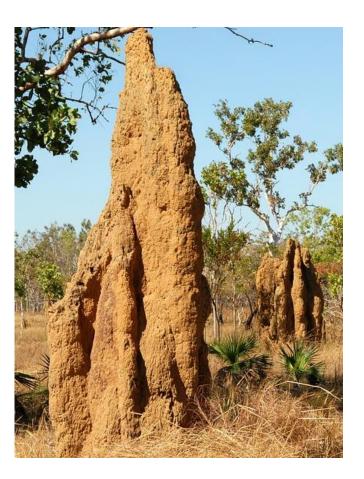
Bordeaux, Tour Hyperion, plus haute tour en bois

Rénovation du campus de Talence (400 000 m²)

QUELLE DEMARCHE environnementale et principes de construction durable ?
Relever des points précis sur ces 2 projets (documentation jointe sur mogdle) PTICB-D9

L'HABITAT ... DES RÉPONSES DIVERSES ADAPTEES

- → AUX CONDITIONS LOCALES, architecture et principes bioclimatiques
- → AUX RESSOURCES LOCALES, matériaux & modes constructifs


MAIS AUSSI ... DES RÉPONSES INSPIRÉES PAR LA NATURE - BIO INSPIRATION

EXEMPLE LE PRINCIPE DE LA TERMITIERE

les termites construisent leur habitat en laissant une multitude de petits trous (ouverts/fermés)

qui permettent à l'air de circuler (colonne aéraulique).

L'air frais est alors stocké à l'intérieur et la chaleur est évacuée à l'extérieur.

Les 3 piliers pour un Développement Durable ...

S'appliquent aux champs de la construction, du bâtiment au quartier et à la ville durable

Social

Insertion, exclusion Santé des populations

Équitable

Inégalités Solidarités

Économique

Capacités productives Innovation et recherches

Modes de production et de consommation

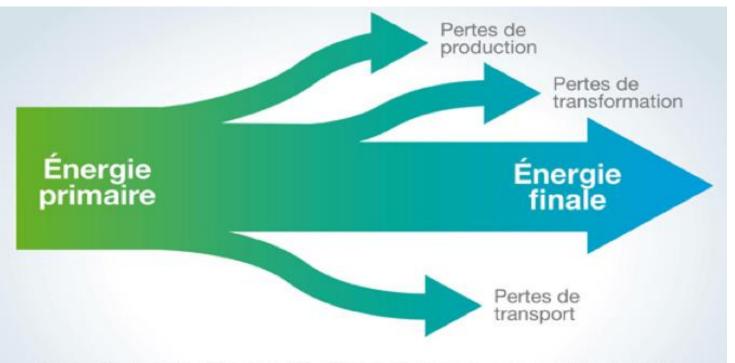
Viable

Environnement

Changement climatique Ressources environnementales

Vivable

Santé


Environnement

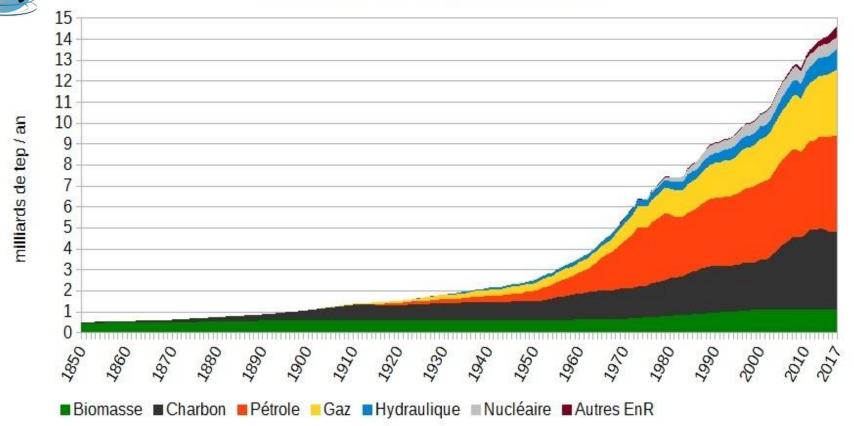
2

Energie & Environnement: Des enjeux aux actions

DE L'ÉNERGIE PRIMAIRE À L'ENERGIE FINALE

Dans le cas de l'électricité, 2/3 de l'énergie est perdue dans le processus de transformation en énergie finale. C'est-à-dire que pour 1 kWh utilisé au compteur, il aura fallu près de 3kWh d'énergie primaire

Source: http://www.developpement-durable.gouv.fr/


- Les énergies « renouvelable » ? Les « non-renouvelables » ?
- Quels rendements selon les filières de production & distribution ?
- Quels impacts sur le climat ? Sur l'environnement ?
- Qu'est-ce qu'une énergie « bas-carbone » ?

CONSOMMATION MONDIALE D'ENERGIES PRIMAIRES E.P.

PÉTROLE/34% CHARBON/28% GAZ-NAT/23% HYDROÉLEC/7% NUCLÉAIRE/4,5% ENR/3,5%

Consommation mondiale d'énergie 1850-2017

(Sources: BP, IEPE, EPI, compléments BCO2 Ing.)

Tout au long de l'Histoire, le passage d'une ressource à l'autre s'est imposé pour différentes causes :

- raréfaction, manque local
- pollution
- coût

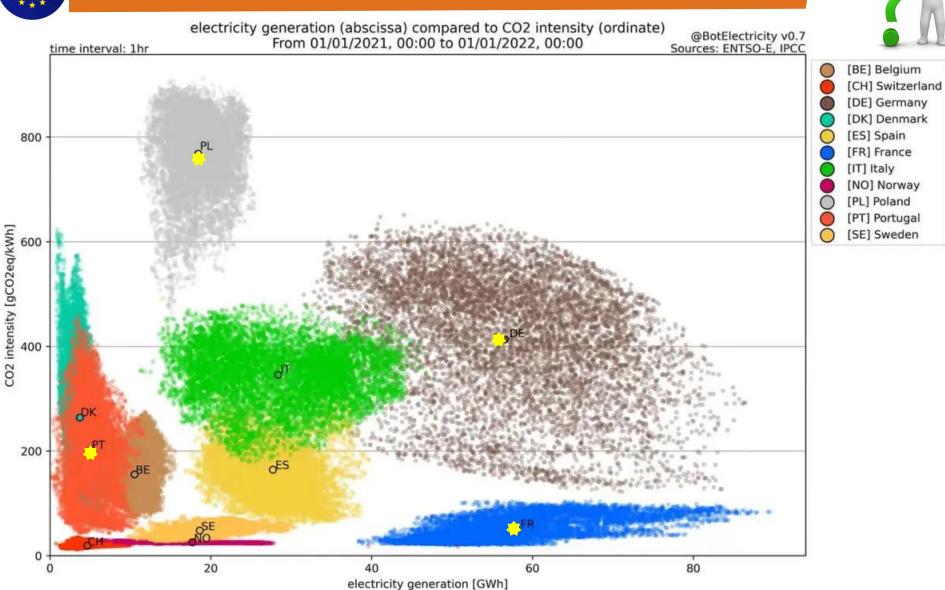
- facilité d'usage, capacité de stockage
- innovation technique
- qualité

(LENTE) RARÉFACTION DES RESSOURCES FOSSILES D'ÉNERGIE

OBSERVATION des réserves et des ressources en énergie fossile : réflexion préalable sur l'avenir climatique.

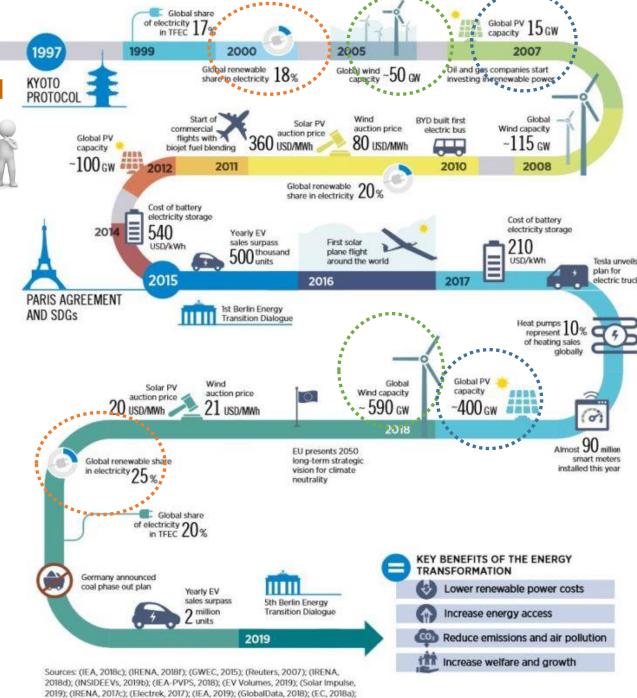
- les "réserves conventionnelles » représentent la quantité extractible aux conditions techniques et économiques actuelles.
- Les "ressources" correspondent aux réservoirs identifiés ou probables et qui seront récupérables à terme.

Échéance de fin d'extraction au rythme actuel (source IIASA Global Energy Assessment et GIEC 5 group III chapter 7 Energy)	Réserves conventionnelles	Réserves conventionnelles et non conventionnelles	Réserves et Ressources	
Pétrole	30 ans	40 à 65 ans	130 à 180 ans	
Gaz	40 ans	2 à 5 siècles	6 à 15 siècles	ision entes
Charbon	110 ans	(non défini)	2 à 3 millénaire à discus	eman
Uranium	50 ans	80 ans	6 à 15 siècles 2 à 3 millénaire à discus Chiffres sujets à discus	


Energie ← → Gaz à Effet de Serre ← → Environnement & Réchauffement climatique

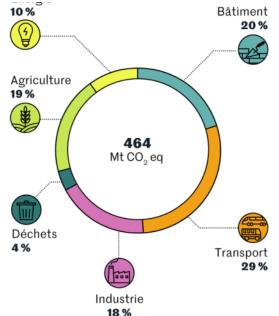
Production ELECTRIQUE horaire ← → Emissions GES

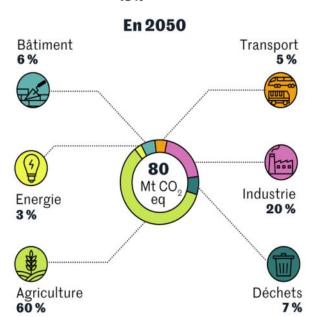
Observer & analyser la relation entre **Production-élec** (abscisse) et **CO2eq/kWh** (ordonnée)
Pour 4 pays, Portugal/PT Pologne/PL France/FR Allemagne/DE


DES SOLUTIONS TECHNOLOGIQUES EN PLEIN DEVELOPPEMENT

Quels indicateurs de progrès?

- Elec-ENR de 18 à 25%
- Eolien de 50 à 590 GW
- PV de 15 à 400 GW
- Stockage-Elec de 540 à 210 USD/kWh
- + Véhicules-Elec
 - + Smart-Grid compteurs


Autres opportunités ?


- → Réduire les coûts ENR
- → Meilleur accès à l'énergie
- → Réduire émissions & pollution
- Rénovation logements anciens & bâtiments Energie-Positive
- → Associer bien-être & croissance

(GWEC, 2019); (CleanTechnica, 2018); (IATA, 2018); (BNEF, 2018).

Objectifs 2050: Neutralité Carbone - 83% réduction E-GES 2015 Loi Transition Ecologique pour la Croissance Verte (2015) 2018 Loi Evolution Logement, Aménagement et Numérique 2019 Stratégie Nationale Bas-Carbone SNBC

Bâtiment : 2015 20% (93 Mt) → 2050 6% (5 Mt) !!

Solutions ...

- Taxe Carbone de 45 à 600€/tCO2
- Rénovation des logements de 290'000 à 700'000 lgts/an
- Pompes à Chaleur / Biomasse / Réseaux de chaleur
- Habitat « bas-carbone »
 matériaux biosourcés/énergie/équipements
- + VE, mobilités douces & collectives

Warnings

- Les retards pris sur les engagements
- Avions, bateaux, transports commerciaux
- Emissions importées sur produits fabriqués à l'étranger

Moyen-long terme

- Economie verte, Economie circulaire
- Mesures sur l'agro-écologie, plan Biodiversité,
- Mobilités « douces »
- Rénovation (en masse) des bâtiments

Transition énergétique et environnementale ...

Ce qu'il faut retenir!

- Problème complexe multi-échelles, de l'individu/local → Pays →
 International
- 2) Calendrier 1990/2020/2030 avec des objectifs chiffrés de réduction de GES pour viser (2050) une augmentation limitée à + 1,5/2°C
- 3) <u>Augmenter l'efficacité énergétique pour moins de consommation</u>
 Tous secteurs confondus :
 - > Industrie, moins énergivore, moins polluante
 - > Transports, nouvelles mobilités, défi des villes et régions
 - > Bâtiment, rénover, isoler, intégrer + d'ENR, neuf et rénovation
- **4)** <u>Décarboner l'énergie :</u> Augmenter la part ENR, réduire les « fossiles » Priorité à l'énergie électrique « bas-carbone », nucléaire (?), hydrogène
- 5) Augmenter les investissements ENR → + d'emplois
 Chute des coûts PV-solaire (-80% depuis 2009 ...)
- 6) Réduire les consommations de ressources naturelles, matière, sable, granulats

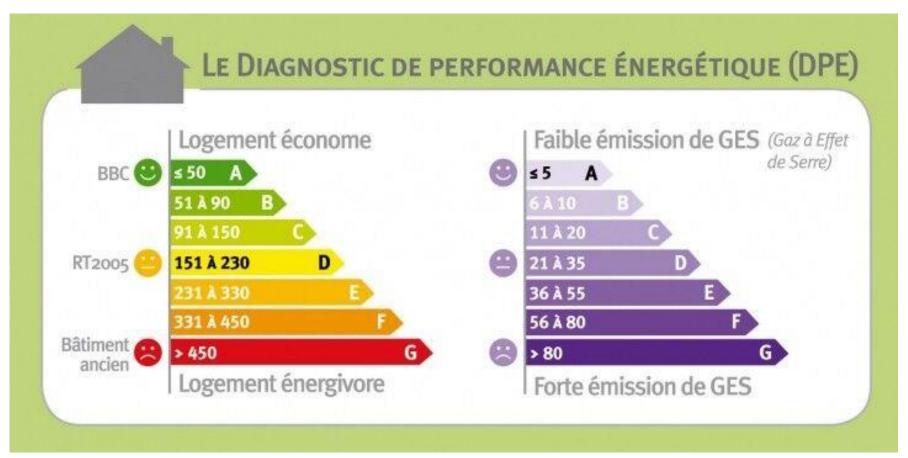
3

En France

Orientations et engagements Pour la construction durable

Que représente le secteur du bâtiment en France ?

POUR Plus de 33 millions de logements Plus de 3 milliards-m² de surfaces bâties chauffés dont 0,9 m² en tertiaire Durée de vie moyenne réelle d'un bâtiment : 100 ans

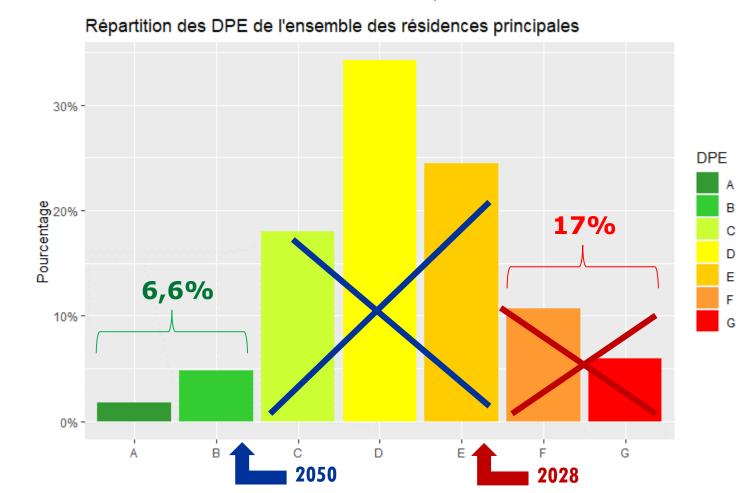

PREMIER consommateur d'énergie 43% (31% transports, 20% industrie)

SECOND émetteur de gaz à effet de serre 25% (28% transports, 21% industrie)

Diagnostic de Performance Energie & CO2

Existe depuis 2006, plusieurs évolutions, 2021

Consommation annuelle en énergie primaire kWhEP /m².an (Chauffage, ECS, ventilation, rafraichissement)


Equivalent GES en kg CO²/m².an

Parc existant: Etat des lieux et objectifs 2030/2050

Sur 29 millions de résidences principales

- → 1,9 million de logements (6,6 % du parc) peu énergivores (étiquettes DPE A et B).
- → 4,8 millions (17 % du parc) très énergivores (F et G « passoires thermiques »).

<u>Facteurs influant sur la perf.DPE : La date de construction du logement, sa taille, sa localisation, le caractère individuel ou collectif de l'habitat et le statut d'occupation</u>

Rénovation énergétique des bâtiments/Objectifs

PLAN France-RELANCE 2020 100 milliards d'Euros → 7 milliards pour la rénovation dont 4 milliards pour les bâtiments publics (écoles, université, etc.) 2 milliards pour les ménages via la prime Maprimerénov' accessible à tous

Rénovation énergétique des bâtiments privés

Au niveau national, le secteur du bâtiment représente près de 25 % des émissions de gaz à effet de serre, dont environ deux tiers sont issus du secteur résidentiel. En complément de la finalisation de la réforme du crédit d'impôt transition énergétique (CITE) au profit de MaPrimeRénov', il s'agit d'amplifier et d'accroitre l'efficacité des aides à la rénovation énergétique des bâtiments privés

Rénovation énergétique et réhabilitation lourde des logements sociaux

Accompagner la restructuration lourde de logements sociaux et leur rénovation énergétique, avec l'ambition de faire émerger des solutions «industrielles » françaises de rénovation énergétique très performante.

Rénovation des bâtiments publics

Investir massivement dans la rénovation énergétique des bâtiments publics de l'État qu'il s'agisse des bâtiments d'enseignement supérieur et de recherche pour lesquels les besoins sont grands ou des autres bâtiments publics de l'Etat.

2022 : (R) évolution dans la règlementation FR!

Passage d'une réglementation thermique RT depuis 1976 à une réglementation environnementale Pour tous les bâtiments neufs

Basse consommation
Bbio
Recours aux ENR

RT 2012

Basse Conso

Isolation Ubat Confort été Conso 5 usages Etanchéité à l'air

RT 2005

BBCA BAS CARBONE

Label BBC-Rénovation

Règlementations Thermiques Depuis 1976

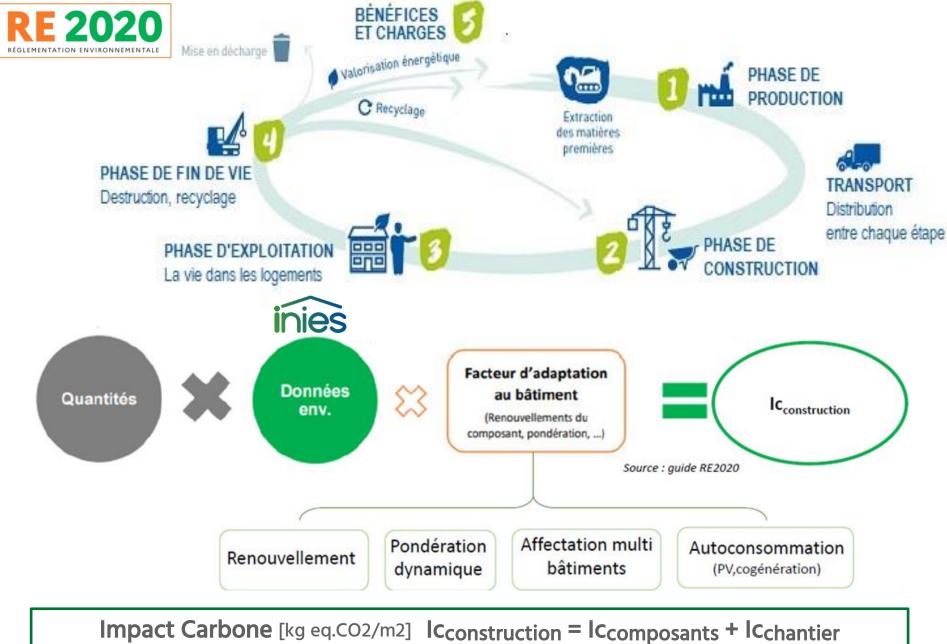
5 OBJECTIFS « officiels »

1. Diminuer l'impact sur le climat des bâtiments neufs

- Prise en compte des émissions de carbone du bâtiment sur son cycle de vie
- Incitation au recours a des modes constructifs peu émetteurs en carbone ou qui permettent de le stocker
- Privilégier les énergies les moins carbonées et sortir des énergies fossiles

2. Améliorer la performance énergétique et réduire les consommations

- La RE2020 va au-delà des exigences de la RT2012
- Renforcer la sobriété énergétique à travers le Bbio (performance de l'enveloppe du bâtiment)
- Systématiser le recours a la chaleur renouvelable


3. Construire des logements adaptes aux conditions climatiques futures

- Objectif de confort d'été
- Prise en compte des épisodes caniculaires
- 4. Assurer une bonne qualité de l'air intérieur dans les logements
- 5. Favoriser les produits issus du réemploi

Les 6 exigences imposées par la RE2020

	Bbio [points]	Besoins bioclimatiques	Evaluation des besoins de chaud, de froid (que le bâtiment soit climatisé ou pas) et d'éclairage.	EVOLUTION
Energie	Cep [kWhep/(m².an)]	Consommations d'énergie primaire totale	Evaluation des consommations d'énergie renouvelable et non renouvelable des 5 usages RT 2012 : chauffage, refroidissement, eau chaude sanitaire, éclairage, ventilation et auxiliaires +	EVOLUTION
_	Cep,nr [kWhep/(m².an)]	Consommations d'énergie primaire non renouvelable	éclairage et/ou de ventilation des parkings éclairage des circulations en collectif électricité ascenseurs et/ou escalators	
	Ic énergle [kg eq. CO ₂ /m²]	Impact sur le changement climatique associé aux consommations d'énergie primaire	Introduction de la méthode d'analyse du cycle de vie pour l'évaluation des émissions de gaz à effet de serre des énergies consommées pendant le fonctionnement du bâtiment, soit 50 ans .	NOUVEAU
Carbone	Ic constrcution [kg eq. CO ₂ /m ²]	Impact sur le changement climatique associé aux « composants » + « chantier »	Généralisation de la méthode d'analyse du cycle de vie pour l'évaluation des émissions de gaz à effet de serre des produits de construction et équipements et leur mise en œuvre : l'impact des contributions « Composants » et « Chantier ».	NOUVEAU
Confort d'été	DH [°C.h]	Degré-heure d'inconfort : niveau d'inconfort perçu par les occupants sur l'ensemble de la saison chaude	Évaluation des écarts entre température du bâtiment et température de confort (température adaptée en fonction des températures des jours précédents, elle varie entre 26 et 28°C).	NOUVEAU

Impact Carbone [kg eq.CO2/m2] Icconstruction = Iccomposants + Icchantier pour une Période Etude de Référence PER de 50 ans

Vers la construction de demain

Des enjeux « climat/énergie » aux solutions innovantes pour la construction durable...

- Préfabrication, industrialisation à l'échelle du bâtiment,
- Nouveaux procédés de conception et fabrication
- Nouveaux matériaux et solutions d'enveloppe,
 habitat « basse-consommation » & « bas-carbone »
- Prise en compte et anticipation sur la durée de vie du bâtiment, mais aussi vers plus de recyclage, de réemploi des matériaux
- Augmenter la part de rénovations à niveau BBC, d'extensions en site urbain

4

Les principes de l'ACV Analyse de Cycle de Vie

Présentation des projets du module CONS10

Déroulement du module CONS10/CONS11

Apprentissage par PROJETS aux 4 échelles

1. PRODUITS, solutions techniques développées pour le bâtiment

Evaluation, Analyse et propositions de produits à partir de l'analyse de fiches FDES 4hTP + 2h-AUT

2. BATIMENT, considérer le bâtiment dans son environnement, tous ses usages, tous ses impacts au long du cycle de vie

ACV (outil PLEIADES) d'un bâtiment exemple 2hTP + 2hAUT + 4h-TP + 2hAUT

3. ROUTES/VOIRIE, analyse matériaux et solutions de mise en oeuvre

Module SEVE Eco-comparateur 3hTD

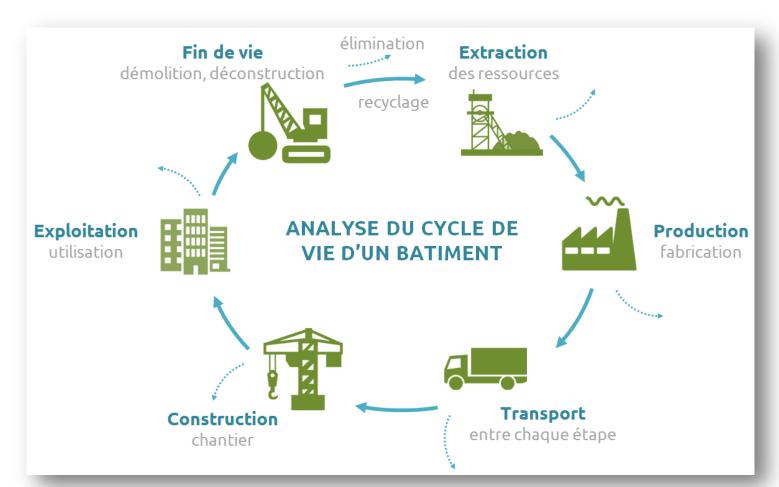
4. QUARTIER, concevoir un éco-quartier avec l'ensemble des bâtiments, des services, des surfaces impactées

Analyse ECO-QUARTIER (outil NEST)

4hTP + 2hAUT + 2h-TP + 2hAUT

<u>Dans une même démarche d'ACV, d'évaluation d'impacts environnementaux</u> <u>et de recherche de solutions plus favorables</u>

EVALUATION DU MODULE:


- → Sur chaque étape, un rapport rédigé à remettre sur moodle
- → DS analyse de Données Environnementales & QCM en fin de module

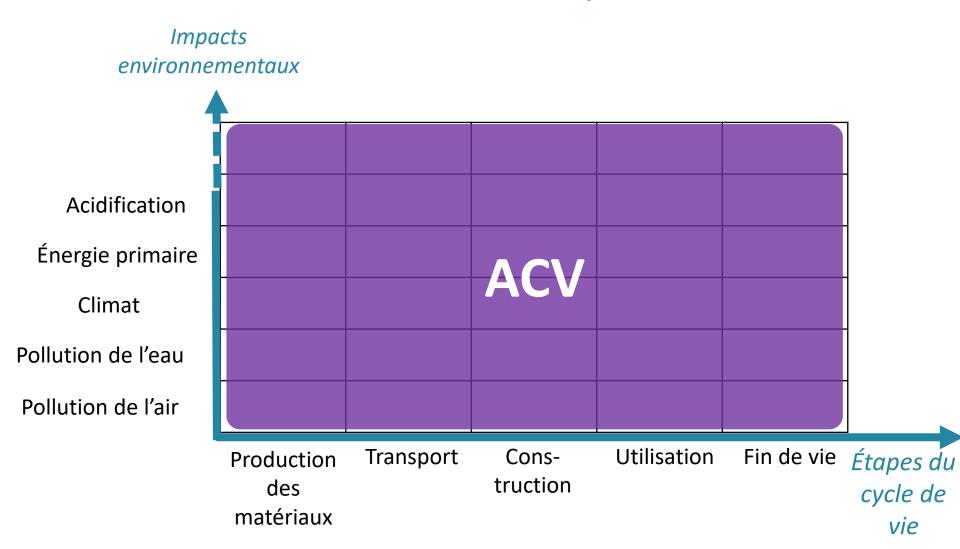
Définition de l'ACV

Documents Izuba/Pleiades

→ Méthode de <u>calcul</u>, puis <u>analyse des impacts sur l'environnement</u> d'un produit, d'un service, d'un bâtiment en prenant en compte <u>toutes les étapes de son cycle de vie</u>

Objectifs de l'étude en ACV

- → Calculer les impacts environnementaux d'un bâtiment ou d'un ouvrage, dans quel but ?
 - Orienter les choix : éco-conception, matériaux, produits, systèmes, démarche éco-responsable
 - Déterminer la performance en vue d'une certification, d'un bilan « carbone » ou d'une estimation en « coût global »
 - Analyser la qualité et les performances dans le cadre d'exigences d'un Maître d'ouvrage public ou privé



Définition de l'ACV

→ ACV : outil multicritères / multi-étapes / multi-échelles

Définition de l'ACV

→ Comparaison à d'autres évaluations environnementales « partielles »

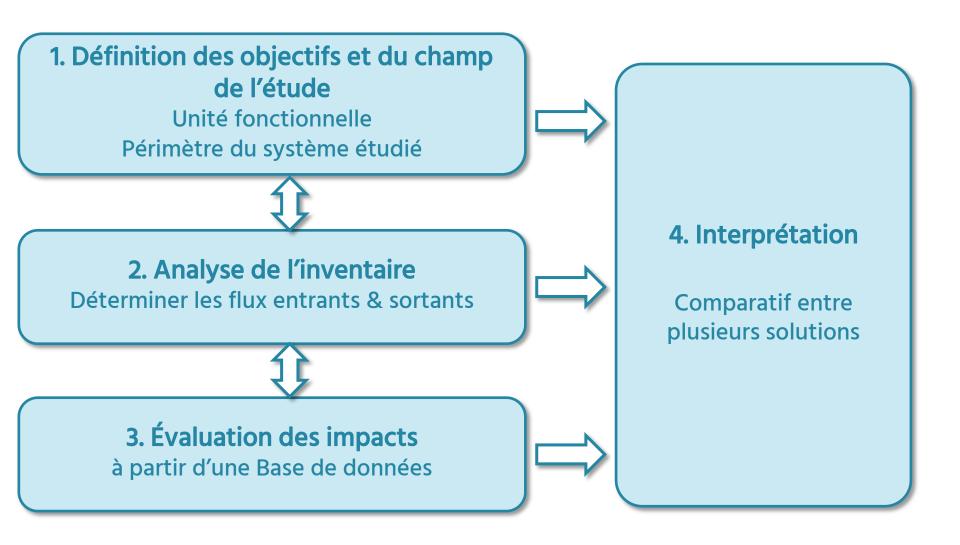
Normes pour l'ACV

Norme ACV ISO 14040/44

Norme ACV produits du bâtiment – FDES – base INIES

anc. NF P 01010

Déclarations environnementales sur les produits EN 15804


Norme ACV bâtiment: EN 15978

Évaluation de la performance environnementale des bâtiments

Méthodologie ACV : Résumé des étapes

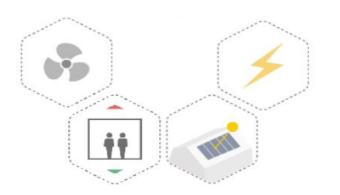
5

Base de données environnementales : Fiches FDES & PEP

Base INIES: Outil indispensable pour l'ACV bâtiment

→ Données environnementales, résultats de démarches (normes) en ACV adaptées au calcul de performance environnementale d'un bâtiment

FDES


Fiche de Déclaration Environnementale et Sanitaire

Produits de construction et de décoration

PEP

Profil Environnemental Produit

Equipements électriques, électroniques et de génie climatique du bâtiment

DONNÉES SPÉCIFIQUES déclarées par des fabricants, des syndicats ou des groupements

<u>Données génériques</u> valeurs par défaut par famille de produits ou équipements DED Données Environnementales par défaut (ex MDEGD)

Base INIES à consulter sur www.inies.fr

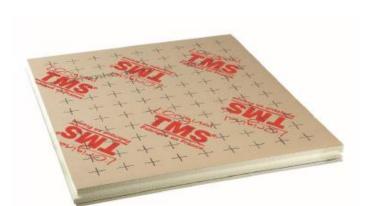
- → Durée de validité : 5 ans
- → 1er juillet 2017 (en fait fin janvier 2018) : obligation d'avoir des déclarations environnementales vérifiées par une tierce partie indépendante

Base INIES: mode d'emploi

1) RECHERCHER UNE FICHE FDES ou PEP par nom, par organisme ou mots-clés

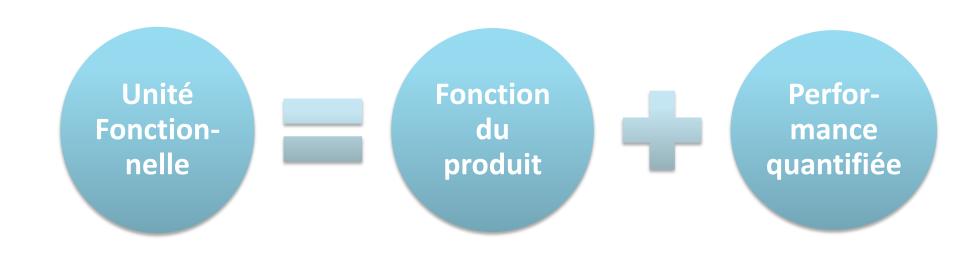
- 2) LIRE UNE FICHE sous 2 formes, en téléchargeant la fiche .pdf ou via les onglets du site web
 - → Informations sur la vérification
 - → Description de <u>l'unité fonctionnelle UF</u> et <u>durée de vie de référence DVR</u>
 - → Références commerciales
 - → Description des étapes du cycle de vie
 - → Résultats : impacts calculés par étapes
 - → Déclarations sanitaires et confort

3) EXPLOITER UNE FICHE


EXEMPLE ITI SPOPREMA: FDES d'un produit d'Isolation Thermique par l'Intérieur ITI

Fiche de déclaration environnementale et sanitaire

Environmental and health product declaration


Panneau d'isolation en mousse rigide de polyuréthane TMS® 80 mm d'épaisseur, R = 3,70 m².K/W (hors accessoires de pose)

Paramètres ACV: Unité Fonctionnelle UF

- On n'étudie pas seulement un produit mais la fonction qui lui est associée : <u>Unité Fonctionnelle</u>
- Rôle: Offrir une référence à laquelle tous les flux de l'inventaire seront rapportés
- A FAIRE : Lire et relever avec précision, la définition UF donnée

Paramètres ACV : définition complète de l'objet étudié

On associe à l'Unité Fonctionnelle du produit,

- → un flux de référence, quantité de produit nécessaire pour remplir la fonction,
- → une durée de vie de référence DVR

Nombre d'années au bout duquel le produit ou l'équipement n'assure plus sa fonction et a atteint sa fin de vie

Produit	Unité fonctionnelle	Flux de référence
Peinture	Couvrir 100 m², avec une opacité de 0,98, pendant une durée de vie de 10 ans	X litres de peinture haute qualité (1 couche, durée de vie de 10 ans)
		Y litres de peinture basse qualité (2 couches, durée de vie de 5 ans)

Application EXEMPLE ITI SPOPREMA UF? DVR? Flux de référence?

LIRE une fiche FDES: Résumé des informations

Informations générales

- · Coordonnées du déclarant
- Type de déclaration (individuelle ou collective)
- Nom du vérificateur
- Caractéristiques du produit

L'unité fonctionnelle et la durée de vie

Profil environnemental

- Description des étapes du cycle de vie
- Résultats de l'analyse (impacts environnementaux, utilisation des ressources, catégories de déchets, flux sortants)

Informations additionnelles sur le relargage des substances dangereuses (seulement pour les FDES)

- · Air intérieur
- Sol
- Eau

Contribution du produit à la qualité de vie à l'intérieur des bâtiments (seulement pour les FDES)

- · Confort hygrothermique
- · Confort acoustique
- Confort visuel
- · Confort olfactif

Informations additionnelles

FDES: Profil environnemental & autres données

FDES (EN15804 + complément national)

Périmètre ACV

- Berceau à la sortie d'usine (A1->A3)
- Berceau à la tombe (A-> C)
- Bénéfices et charges au-delà des frontières du système (module D)

Impacts Environnementaux

- Réchauffement climatique
- Appauvrissement de la couche d'ozone
- Acidification des sols et de l'eau
- Eutrophisation
- Formation d'ozone photochimique
- Epuisement des ressources abiotiques (éléments et fossiles)
- Pollution de l'air
- Pollution de l'eau

Maîtrise des risques sanitaires

- Contribution à la qualité des espaces intérieurs
- Contribution à la qualité de l'eau

Confort

- Confort hygrothermique
- Confort acoustique
- Confort visuel
- Confort olfactif

Méthodo ACV : caractérisation des impacts

→ Des impacts vers les dommages : la chaîne de cause à effet

Inventaire des flux Indicateurs orientés problèmes (midpoint)

Effet de serre
Acidification
Eutrophisation
Production
d'ozone
photochimique
Épuisement des
ressources

Indicateurs orientés dommages (endpoint)

Dommage à la biodiversité Dommage à la santé

Méthodo ACV : caractérisation des impacts

Conversion de <u>l'inventaire</u> en <u>indicateurs d'impacts</u>

Inventaire du cycle de vie

- Matières (eau, produits chimiques...)
- Énergies (élec., chaleur...)
- Émissions dansl'eau, l'air, le solDéchets

Méthode de caractérisation des impacts
(ReCiPe, CML2001...)

Indicateurs d'impacts environnementaux

- Potentiel de réchauffement climatique
- Potentield'eutrophisation
- Épuisement de l'eau

- ...

- → L'indicateur est la grandeur calculée (ex : potentiel de réchauffement climatique)
- → L'impact est le phénomène caractérisé (ex : le réchauffement climatique)

EXERCICE COMPARATIF de 2 PRODUITS (ou plus)

- → Objectif de l'étude ACV : Comparer 2 produits « concurrents »
 - 1. Sélectionnez 2 produits remplissant la même fonction (ou quasiment)
 - 2. Définissez une unité fonctionnelle à cette étude ainsi qu'un flux de référence
 - Télécharger et exploiter les données des fiches
 Extraire les indicateurs les plus adaptés au contexte étudié

Etape 1 / PRODUITS - FDES ACV de produits et équipements pour le bâtiment

FICHE DE DECLARATION ENVIRONNEMENTALE ET SANITAIRE Suivant la norme EN 15804

Base de données accessible sur www.inies.fr

Plus de 2500 FDES ET 500 PEP représentant 650 000 références commerciales pour les produits de construction

OBJECTIF Permettre aux fabricants de communiquer sur les aspects environnementaux et sanitaires de leurs produits.

DEFINITIONS INDISPENSABLES

UF Unité Fonctionnelle du produit :

Unité de compte à laquelle va se référer l'ACV, dépend du service rendu par le produit étudié. Exemples ...

- 1 m² mis en œuvre pour les produits de couverture, de cloisonnement ou pour un mur ;
- supporter les charges et autres éléments du plancher sur 1 ml pour une poutre ;
- assurer le transport des eaux usées sur 1 ml pour une canalisation d'assainissement, etc.

UF du produit intègre - sa Durée de Vie de Référence du produit, DVR

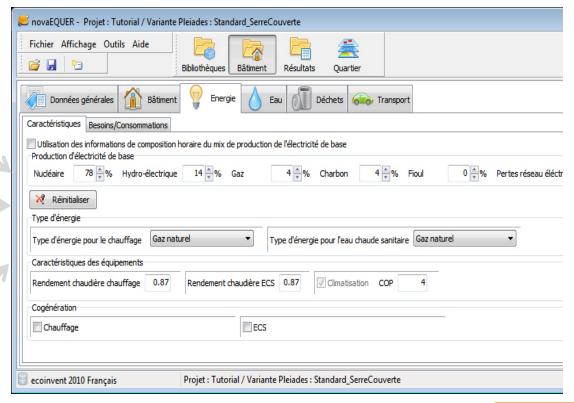
- Ainsi que l'ensemble des constituants du produit considéré, emballage compris.

Etape 2 / ACV BATIMENT

Bilan des impacts environnementaux

- → Apprécier la performance environnementale d'un bâtiment au-delà de la seule consommation énergétique et du seul bilan Carbone kg_{eq.}CO² ..
- → D'autres aspects environnementaux se révélant également impactant :
 - Bilan énergie « complet » y compris,
 - consommation d'eau,
 - production de déchets, dangereux, non dangereux, radioactifs,
 - formation d'ozone,
 - Impacts sur l'air, sur l'eau, odeurs, etc ...
- → Par ailleurs, la prise en compte de ces impacts doit nécessairement se faire sur l'ensemble ou presque de la vie d'un bâtiment (la durée conventionnelle de calcul est fixée à 50 ans) :

Analyse du cycle de vie (ACV) déjà normalisée par la famille des normes ISO 14 040. Plusieurs logiciels spécialisés dans les ACV bâtiments : Elodie, Equer, Team Bâtiment.


ACV du bâtiment : Bilan des impacts environnementaux

STD Pleiades Conso énergie

Données produits_ ECOinvent 2.2

Scénarios Usages bâtiment

BILANS ENERGIE, EAU, DECHETS, TRANSPORTS

SYNTHESE
EMISSIONS
12 indicateurs
environnementaux

Etape 3 / Eco-comparateur ROUTES Système d'Evaluation des Variantes Environnementales

SEVE permet à l'utilisateur, à l'occasion d'un appel d'offres ou d'un projet, de saisir les paramètres de chaque solution, à savoir :

- nature des couches, constituants,
- condition de fabrication de la chaussée,
- composition des ateliers d'application,
- distances et modes de transports...

A l'issue de l'inventaire et à partir d'une base de données de référence, 7 indicateurs sont déterminés

Etape 4 / Conception Eco-Quartier Bilan des impacts environnementaux

étape 1

LE DÉVELOPPEMENT DURABLE

- Les concepts du développement durable dans l'aménagement du territoire
- -> Quizz de validation des acquis
- Mise en situation sous la forme d'un cahier des charges du maître d'ouvrage

étape 3

VALIDATION DU PROJET

- Vérifications logicielles des saisies
- Check-list pour conformité au cahier des charges
- Validation de l'application des concepts d'urbanisme durable

étape 2

CONCEPTION DE L'ÉCOQUARTIER

- → A : modélisation de l'écoquartier par l'élève
- → B : utilisation d'une bibliothèque de composants
- > C: saisie des informations complémentaires sur les composants

étape 4 IMPACT ENVIRONNEMENTAL DU PROJET

- → D : évaluation du projet conçu à travers des indicateurs
- → Les données de l'écoquartier de l'élève sont comparées à celles de deux modèles (écoquartier et lotissement)
- → Rapport de l'opération réalisée

ACV Quartier: Bilan des impacts environnementaux

B) Bibliothèque composants

Evaluation des impacts du quartier

C) Saisie des informations du quartier (population, budget, usages, transport, ...)

D) Comparaisons de scénarios Référence d'écoquartier