Exercice 2.2

1. Un atome d'hydrogène dans l'état fondamental absorbe un photon de longueur d'onde $\lambda_1=97,28$ nm, puis émet un photon de longueur d'onde $\lambda_2=1879$ nm. Sur quel niveau l'électron se trouve-t-il après cette émission ?

Absorption: transition $1 \to n$

$$\frac{1}{\lambda_1} = R_H \left| 1 - \frac{1}{n^2} \right|$$

Emission: transition $n \to m$

$$\frac{1}{\lambda_2} = R_H \left| \frac{1}{m^2} - \frac{1}{n^2} \right|$$

D'où:

$$\frac{1}{\lambda_1} - \frac{1}{\lambda_2} = R_H \left| 1 - \frac{1}{m^2} \right| = D_\lambda$$

Soit:

$$m = \sqrt{\frac{R_H}{R_H - D_\lambda}} = 3$$

2. Si l'électron de l'hydrogène est excité au niveau n=3, combien de raies différentes peuventelles être émises lors de son retour au niveau fondamental? Classer les transitions correspondantes par fréquence décroissante des photons émis.

3 raies différentes peuvent être émises :

- transition 3 \rightarrow 2, fréquence ν_{32}
- transition $3 \to 1$, fréquence ν_{31}
- transition 2 \rightarrow 1, fréquence ν_{21}

 $\nu_{31} > \nu_{21} > \nu_{32}$