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Optical response of a metallic nanoparticle immersed in a medium with optical gain
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We study theoretically the polarizability of a single metallic nanoparticle immersed into an externally pumped,
active gain medium able to couple to the plasmon resonance. Within the frame of a simple long-wavelength,
macroscopic description, and under steady-state conditions, we show that localized plasmons can be strongly
amplified, until becoming singular for a specific amount of surrounding gain; however, we find that such
gain-assisted singular plasmons exhibit spectrally spread imaginary responses and are therefore intrinsically
different from singular plasmons in idealized, lossless metals. More generally, we carry a systematic study of
how the plasmonic response transforms under changes in the amount of gain, and show that the coupled particle
and active medium act as a self-tuned Fano resonant system. The resulting plasmons exhibit strongly distorted line
shapes with unusual but interesting features. One particularly attractive situation is that of “conjugate plasmons,”
which, at resonance, display a strong real response in association with minimal losses. These findings could have
some applications in plasmonics, nanoantennas, nanosensing, and optical metamaterials.
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While based on phenomena recognized and described
almost one and a half century ago, the physics of plasmons
in metal nanostructures1 has been recently fueled by the rapid
development of new techniques for producing small particles
and objects, and has found a new field of applicability for
the realization of visible-range metamaterials. One of the
critical issues in using metallic nanostructures for metama-
terial applications at optical frequencies is their high level of
losses. Possibly the most promising strategy to circumvent this
obstacle is loss compensation, where the structures are coupled
to active compounds which are able to transfer energy from
the pump and therefore amplify the desired response. Research
along this line has recently gained momentum,2–19 resulting for
example in the first demonstration of a nanoscale spaser using
gain-assisted core-shell nanoparticles.20 In this work we study
the related but simpler situation of a single, homogeneous
metallic nanoparticle immersed in a gain medium. We focus on
the plasmonic response, with its amplification and distortions;
we show that new types of responses arise as the gain level is
modified and we emphasize striking differences between the
two noble metals, gold and silver.

We consider a single spherical nanoparticle (NP) made
of a metal with a relative permittivity εm depending on the
frequency ω: εm(ω) = ε′

m(ω) + iε′′
m(ω), with ε′

m(ω) < 0 (for ω

below plasma frequency) and ε′′
m(ω) > 0 (representing ohmic

losses). In the following, actual values of εm for gold and
silver have been interpolated from Ref. 21. The nanosphere is
immersed in a host medium, for example, a solution of dye
molecules or quantum dots (QD), with relative permittivity
εh = ε′

h + iε′′
h . We consider the polarizability α of the NP,

which relates the total dipole moment p to the local electric
field Eloc as p = αEloc. The polarizability is classically given
as22

α(ω) = α′(ω) + iα′′(ω) = 4πr3[ε′
h(ω) + iε′′

h (ω)]

× [ε′
m(ω) − ε′

h(ω)] + i[ε′′
m(ω) − ε′′

h (ω)]

[ε′
m(ω) + 2ε′

h(ω)] + i[ε′′
m(ω) + 2ε′′

h (ω)]
. (1)

In the common case of a sphere immersed in a passive,
dielectric host medium with negligible losses (ε′

h > 0, ε′′
h = 0),

Eq. (1) predicts the appearance of the localized surface plas-
mon resonance centered around the frequency ω0 defined by
ε′

m(ω0) + 2εh(ω0) = 0. The real part α′(ω) assumes a classical
a ripple-like, “up-down” line shape while the imaginary part
has a bell-like, Lorentzian line shape. This behavior is very
clearly exhibited in silver NPs [see Figs. 1(a) and 2(a)], while
the response for gold NPs shows some distortions under the
effect of a higher level of interband losses [see Fig. 3(a)].23

For many applications and devices based on plasmonic
resonators, one is interested in working in the regions where
the α′ (real) values are largest (positive or negative), that is,
on the wings of the resonance; however, these are inevitably
associated with significant α′′ losses. The ideal situation
looked for is that of singular “perfect plasmons” arising in
lossless metals: when ε′′

m(ω) = 0, the real response becomes a
singular function α′ ∼ 1/(ω − ω0). Meanwhile, the width of
the Lorentzian shrinks to a Dirac peak, centered at ω0 [see
Fig. 1(a)], which means that losses essentially vanish over the
whole spectrum except at the resonance frequency.

The question then arises whether it is possible to approxi-
mate this behavior in any way by compensating the losses in
real metals with a surrounding gain medium. Lawandy,5 also
considering Eq. (1), has found the conditions for singularity
to be recovered, but to the best of our knowledge, the exact
spectral behavior of the plasmonic response at singularity
has never been studied in detail, nor at lower or higher gain
levels. We here show that highly interesting new plasmonic
behaviors can arise. We do not address the question of the
stability of the found solutions—our results are steady-state
predictions, valid for times longer than all internal time
constants involved in state transitions within the dye or QD
system.7 We therefore take interest in the behavior of α(ω)
in the presence of an amplifying medium surrounding the
nanoparticle, with ε′′

h (ω) < 0. Without loss of generality, a
single Lorentzian emission line shape is assumed for the gain
host: εh(ω) = εb − ε′′

h (ωg)�/[2(ω − ωg) + i�], where εb is
the real, positive permittivity of the background medium in
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FIG. 1. (Color online) (a) Solid lines: Plasmon resonance of the
polarizability α of a 10-nm radius silver nanosphere in water. Dotted
lines: Ideal plasmon resonance when metallic losses are suppressed
[ε′′

m(ω) = 0]. (b) The metal (here, silver) plasmon resonance curve
α′′(ω) and the gain emission line in the surrounding medium ε′′

h (ω)
are assumed for simplicity to be centered at the same frequency and of
comparable width, see main text [note the different scales for α′′(ω)
and ε′′

h (ω)].

which the gain elements are dispersed, ε′′
h (ωg) denotes the

maximum value of ε′′
h (ω) and sets the global level of gain

in the medium, � is related to the emission linewidth, and
ωg is the emission central frequency. The gain molecules
or nanocrystals are externally pumped at some (absorption)
frequency located sufficiently far away from the plasmon
resonance at ω0. The gain coefficient γ of the medium per
unit length, taken at frequency ωg , can be estimated from
the Beer-Lambert law and is directly related to the value
of ε′′

h (ωg)6: γ = −2πωgε
′′
h (ωg)/[c

√
ε′

h(ωg)] with c the speed
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FIG. 2. (Color online) Silver: Evolution of the plasmon resonance
of a 10-nm silver nanoparticle as gain is increased, from (a) to (f), in
the surrounding medium, before and after the singular plasmon value
(d). Parameters: εb = 1.769 (water), ω0 = ωg = 3.24 eV, � = 0.15.

 0x100
 1x104
 2x104
 3x104
 4x104
 5x104

         

 2  2.2  2.4  2.6  2.8

Energy (eV)

(a)

α’ 
α’’

εh’’(ω0)=0

-3x105

-2x105

-1x105

 0x100

 1x105

 2x105

 3x105

         

P
ol

ar
iz

ab
ili

ty
 (

nm
3 )

(b)

α’ 
α’’

εh’’(ω0)=-1.123

-3x105
-2x105
-1x105
 0x100
 1x105
 2x105
 3x105

2 2.2 2.4 2.6 2.8

Energy (eV)

(c)

α’ 
α’’

εh’’(ω0)=-1.322

2.2 2.4 2.6 2.8

-3x105
-2x105
-1x105
 0x100
 1x105
 2x105
 3x105

Energy (eV)

(d)

α’ 
α’’

εh’’(ω0)=-1.399

    

-3x105

-2x105

-1x105

 0x100

 1x105

 2x105

 3x105

(e)

α’ 
α’’

εh’’(ω0)=-1.776

    

-3x105
-2x105
-1x105
 0x100
 1x105
 2x105
 3x105

 2.2  2.4  2.6  2.8

Energy (eV)

(f)

α’ 
α’’

εh’’(ω0)=-2.367

FIG. 3. (Color online) Gold: Evolution of the plasmon resonance
of a 10-nm gold nanoparticle as gain is increased, from (a) to (f), in
the surrounding medium, before and after the singular plasmon value
(d). Parameters: εb = 1.769 (water), ω0 = ωg = 2.41 eV, � = 0.35.

of light in vacuum. It can be adjusted either by varying the
pumping power or, more efficiently, the concentration of gain
elements.

In the following we shall present results assuming that the
dye emission frequency is centered on the plasmon resonance,
that is, ωg = ω0. This assumption, here made for the sake
of simplicity, can be relieved: our calculations show that the
same results are obtained with uncentered dyes, with the only
differences that higher global gain levels are required, and
that the plasmon resonance will progressively drift from its
intrinsic (zero-gain) frequency in direction of the dye emission
frequency as the gain level in the system is increased.

Singular plasmons—Singular plasmonic behavior can be
retrieved by completely canceling the denominator in Eq. (1)
at the plasmon frequency ω0,5 that is, by having not only
ε′

m(ω0) = −2ε′
h(ω0) but also ε′′

m(ω0) = −2ε′′
h (ω0) through

proper adjustment of the amount of gain. The corresponding
singular curves α′(ω) and α′′(ω) for 10-nm silver and gold
nanoparticles are plotted numerically in Figs. 2(d) and 3(d),
and deserve several comments. (i) As expected, the resonances
are very sharp, but both α′ and α′′ have a 1/(ω − ω0) behavior,
which means that gain-assisted plasmons—even singular—
have a spectrally spread, nonvanishing imaginary response.
This is a crucial difference to the hoped for perfect plasmons
illustrated in Fig. 1(a), stemming from the fact that in the
denominator of Eq. (1), losses can be compensated at only
one frequency (ω = ω0) rather than over the whole spectrum.
This asymptotic imaginary response depends crucially on the
intrinsic metal properties, and, in this sense, the compensation
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of losses is more efficient in silver than in gold, which
has more significant spreading. (ii) As ω is increased, the
particle’s behavior transits from an active state (α′′ < 0)
before the resonance, to a passive, absorptive behavior beyond
it (α′′ > 0); therefore, for singular plasmons, spaser-like or
emissive situations should be looked only for ω < ω0. If one
is interested in such situations, gold may be more appropriate
since the negative imaginary part α′′ is stronger than in silver.
(iii) The level of gain required to retrieve singularity is much
larger for gold [ε′′

h (ω0) = −1.399 in Fig. 3(d), corresponding
to γ � 1.3 × 105 cm−1], due to higher interband losses, than
for silver [ε′′

h (ω0) = −0.093 in Fig. 2(d), corresponding to
γ � 1.1 × 104 cm−1].

We finally add one remark: in real systems, when the
local electromagnetic field blows out near the singularity, this
singularity shall obviously be suppressed and cut off by the
rise of nonlinear saturation terms, not included here. However,
our main findings will remain.

The numerical plots can easily be explained with the help
of a Taylor expansion around the resonance:

α = 4πr3 1

|σ |
[
εh(ω0) − 3εh(ω0)2

σ (ω − ω0) + i	′′

]
, (2)

where we defined 	 = εm(ω0) + 2εh(ω0) and σ = ∂
∂ω

(εm +
2εh)|ω=ω0 . Note that 	′ = 0 is the condition used to calculate
ω0, while 	′′ = ε′′

m(ω0) + 2ε′′
h (ω0) is a measure of the amount

of residual losses or excess gain. When 	′′ → 0, Eq. (2) clearly
shows the 1/(ω − ω0) behavior of both real and imaginary
parts.

Low-loss metal behavior—We now turn to the particle
response before (	′′ > 0), and after (	′′ < 0) the singular
point. The behavior is significantly different, depending on
the nature of the metal, silver or gold.

Looking at the situation for silver (Fig. 2), we see that it
simply corresponds to that of an plasmon of increasing quality
and amplitude as ε′′

h (ω0) increases from zero [Figs. 2(b) and
2(c)], until the singular point is reached [Fig. 2(d)]. As ε′′

h (ω0)
is increased after the singular point, the plasmon gradually
degrades due to excess gain since the denominator in Eq. (1)
acquires a growing (negative) imaginary part. Note, however,
that the imaginary part of α is now negative in the resonant
region, meaning a state where the particle acts a net emitter of
light [Figs. 2(e) and 2(f)]. Very close to the singular point, the
emission line can be very sharp [Fig. 2(e)]; this could probably
yield appropriate conditions for the appearance of spasing.17,20

This whole set of behaviors can be retrieved analytically by
studying the Taylor expansion in Eq. (2) for 	 �= 0, and were
further able to show that it will hold in general for any Drude-
type metal.

High-loss metal behavior—The situation for gold is strik-
ingly different, with richer behavior (Fig. 3). In the absence of
gain [ε′′

h (ω0) = 0], the plasmon resonance for gold, compared
to that of silver, is distorted and not very pronounced, due to
high interband losses. As gain is added toward the singular
point, the resonance takes on sharper features (increased
quality factor) but is also increasingly distorted. Indeed, for
a large range of gain values [Figs. 3(b) and 3(c)], one observes
a most interesting situation arising, where the real part α′(ω)
has a bell-like shape (whereas this is what is usually seen for

imaginary response, as in silver for example), and conversely,
the imaginary part has now the ripple-like shape (normally
expected for real response). We call this original behavior
“conjugate plasmon” since usual real and imaginary parts
are swapped. This new behavior, which we have checked
to be Kramers-Kronig compliant,24 shows one particularly
attractive property: at the plasmon frequency, where the real
response is maximal, losses are also close to zero; this is
in fact much more favorable for practical applications than
the situation of usual plasmons, where the extrema of the
real response, located on the wings of the resonance, come
with nonnegligible losses which degrade plasmonic system
performance. Increasing the gain level past the singular point
[Fig. 3(d)], reveals a symmetrical situation where conjugate
plasmons also appear. While conjugate plasmons obtained
before the singular point had a positive real part, here they
display a negative real part [Figs. 3(d) and 3(e)]. This type of
response could therefore be seen as even more interesting than
their positive counterparts, if one is interested in obtaining
artificial, low-loss media with so-called “negative” properties.
We again performed an analytical study of the set of behaviors
displayed in Fig. 3, confirming that the appearance of such
conjugate plasmons in gold (negligible for silver, see below)
is directly due to the higher intrinsic loss level (interband
transition).

Self-tuned Fano resonant system—The sometimes extreme
distortions in the resonant line shapes observed for gold arise
because the coupled particle and active medium act as a Fano
resonant system, well known for generating asymmetric line
shapes.25,26 The Fano nature of this system can be formally
demonstrated. Equation (2) can indeed be recast into

α′ = 4πr3 ε′
h(ω0)

|σ |
{

1 + 3ε′
h(ω0)

× [(1 − F 2)σ ′ + 2Fσ ′′](ω − ω0) + 2F	′′

|σ |(ω − ω0)2 + 	′′2 + 2	′′σ ′′(ω − ω0)

}
, (3)

α′′ =−4πr3 ε′
h(ω0)

|σ |
{

1 − 3ε′
h(ω0)

× [(1 − F 2)σ ′′ + 2Fσ ′](ω − ω0) + (1 − F 2)	′′

|σ |(ω − ω0)2 + 	′′2 + 2	′′σ ′′(ω − ω0)

}
,

(4)

where F = −ε′′
h (ω0)/ε′

h(ω0) is the ratio of gain to real
permittivity in the host medium. The above formulas are
typical equations for Fano line shapes, with a contribution
of a Lorentzian term and a contribution of the derivative of
a Lorentzian. The parameter F can be identified with the
classical Fano factor which controls the amount of asymmetry:
for F = 0, one observes the zero-gain standard plasmon;
whenever condition (1 − F 2)σ ′ + 2Fσ ′′ = 0 is verified, a
conjugate plasmon appears, with one root corresponding to
positive real polarizability [Figs. 3(b) and 3(c) for gold] and
the other to negative real polarizability [Figs. 3(e) and 3(f)].
(Note that the conjugate resonances persist in a rather wide gain
range around these exact analytical positions.) In the case of a
Drude metal (e.g., silver), one has σ ′/|σ | ∼ 1 and σ ′′/|σ | ∼ 0,
and only one conjugate plasmon resonance is obtained for the
double root F = 1. However, this conjugate plasmon is not
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visible in Fig. 2, because it occurs for gain levels far above
the singular point, and therefore the corresponding plasmon
amplitude is negligible.

Physically, Fano resonances generically appear in con-
figurations where one spectrally broad resonator interferes
with a sharper one:25,26 looking at Eq. (1), the broad Fano
resonant mode here is the active medium Lorentzian emission
resonance, represented by the factor term εh(ω), and the sharp
mode is the plasmon resonance, represented by the term
(εm − εh)/(εm + 2εh). However, at zero gain, we note that
the plasmonic and gain resonators have comparable spectral
widths, hence inhibiting any Fano process associated with the
host medium (there is, however, another, small amplitude Fano
resonance associated with the interband losses in gold, which
explains why the “natural” plasmon resonance there looks
somehow lopsided compared to silver). The specificity of the
present system is that, as gain is increased, the relative widths
of the interacting resonators change in correlated fashion:
the plasmonic resonator sharpens, due to the increase in the
strength of the broad resonator ε′′

h (ω) in the denominator
of Eq. (1). In this sense, this constitutes a remarkable and
unusual example of a “self-tuned” Fano system, where the
spectral widths of the broad and sharp interacting resonances
are not prescribed initially, but instead the interaction itself
gradually adjusts them into the proper configuration for the
Fano resonance to arise.

Although the approach presented here is admittedly very
simple, ingredients are generic, entailing that such new
behaviors should appear for many plasmonic systems coupled
to gain. Indeed, Fig. 2(c) from Ref. 16 on loss-compensated
fishnet metamaterials shows the evolution of an absorption
curve, calculated with a much more elaborate FDTD approach,
from bell-shaped to ripple-like, which we interpret as the
appearance of conjugate plasmons. Similarly, we have verified
that the toy model proposed in Ref. 13 for a set of split-
ring resonators on a gain material substrate also produces
conjugate plasmons in certain regimes. Furthermore, the

experimental measure presented in Fig. 5(d) from Ref. 27
on dye-doped gold nanoparticles shows how absorbance is
distorted asymmetrically as the pump is switched-on (i.e., gain
added to the system). This can be once again interpreted, in
our description, as the appearance of conjugate plasmons.

In conclusion, in this Brief Report, we have studied in detail
the plasmonic response of a metallic nanoparticle immersed in
a gain medium, as a function of both gain level and the nature of
the metal under consideration. The quality of the resonance can
be drastically enhanced until the response becomes singular
(in the absence of saturation effects) at a given gain level.
For metals with a low level of losses like silver, the behavior
is rather straightforward, with an increasing quality of the
plasmon resonance as gain is increased toward the singular
point is reached. For gold, however, due to the higher loss
associated with the interband transition, the situation is richer,
in particular with the appearance of “conjugate” plasmons
which arise as a Fano-type interference between the plasmon
and the gain resonance curve. In all cases, it is predicted that
spectrally sharp emissive or absorptive modes can be obtained
close to the singular point. Losses, however, can never be
suppressed even at the singular point, where they reach an
asymptotic limit which cannot be improved upon and depends
crucially on the intrinsic metal properties. Work is in progress
to introduce level equations for the surrounding gain medium
and study the temporal dynamics of such systems, with the
hope to reach a better understanding of the wealth of plasmonic
behaviors that gain-assisted nanoparticles have to offer.
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Lett. 9, 882 (2009).
24J. Skaar, Phys. Rev. E 73, 026605 (2006).

25A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys.
82, 2257 (2010).

26B. Luk’yanchuk et al., Nat. Mater. 9, 707 (2010).
27A. De Luca, M. Ferrie, S. Ravaine, M. La Deda, M. Infusino,

A. R. Rashed, A. Veltri, A. Aradian, N. Scaramuzza, and G. Strangi,
J. Mater. Chem., doi: 10.1039/C2JM30341H.

115429-5

http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1021/nl803794h
http://dx.doi.org/10.1021/nl803794h
http://dx.doi.org/10.1103/PhysRevE.73.026605
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1103/RevModPhys.82.2257
http://dx.doi.org/10.1038/nmat2810
http://dx.doi.org/10.1039/C2JM30341H

