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Chapter 1

Electromagnetism in matter

To understand how light interacts with matter it is first important to un-
derstand how electromagnetic waves interact with matter. This is because
light itself is an electromagnetic wave that oscillates at frequencies that are
not too far from the visible. We owe so much of our current understanding
of how electromagnetic waves behave to James Clerk Maxwell who was a
Scottish Physicist and mathematician who, towards the second half of the
nineteenth century was able to beautifully unify all the laws of electricity
and magnetism into a small set of equations. Today they count as four
equations and many Physicists consider his contribution to science to be
comparable in significance to those of Isaac Newton and Albert Einstein.
Thanks to Maxwell, we know how moving charges generate electromagnetic
waves as well as how electromagnetic waves create charge displacement. It is
with his model, that he realized that electromagnetic waves actually travel
at the speed of light. This made him suggest that light was actually nothing
more than an electromagnetic wave.

Figure 1.1: James Clerk Maxwell
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6 CHAPTER 1. ELECTROMAGNETISM IN MATTER

This chapter is not a rigorous course on electromagnetism, but an intro-
duction to basic tools of electromagnetism that are useful to understand how
light and matter interact and what observables can be used to characterize
the solid state.

1.1 Maxwell’s equations in matter

When an electromagnetic field impinges on an area of space containing
charges, the Lorentz force sets these charges into motion. The Lorentz force
simply reads

F = q (E + v ×B) (1.1)

where q is the electric charge, E is the electric field, B is the magnetic field
and v is the velocity of the charge moving through the fields.

Maxwell’s equations describe the spatial and time variations of the elec-
tric and magnetic fields as well as how they generate one another. They also
describe how they relate to the position and motion of charges. They are
the following differential set of coupled equations

∇×E(r, t) = −∂B(r, t)

∂t
(1.2)

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t) (1.3)

∇.D(r, t) = ρ(r, t) (1.4)

∇.B = 0 (1.5)

where we can list the following physical vector and scalar fields (and their
units)

• E is the electric field (in V/m)

• H is the magnetic field (in A/m).

• B is the magnetic flux density (in T). In the simple cases we shall be
interested with in this course, this vector field may be viewed as the
magnetic response of the material to the magnetic field present in the
material.

• D is the electric displacement (in C/m2). Similarly, this field may be
viewed as the electric response of the material to the electric field in
the material.

• J is the electric current density (in A/m2).

• ρ is the electric charge density (in C/m3). In most definitions of
Maxwell’s equations in matter, the charges considered in this density
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are free charges1. This is because the charge density that accounts for
bound charges is hidden in the definition of D, but this will become
clear a little later. And as a matter of fact, the free-charge density can
also be hidden into the definition of D such that for the rest of the
course, we shall consider ρ = 0.

The sources of the electromagnetic field in the previous equations are both
J and ρ. This means that the distribution of charges and currents is what
generates an electromagnetic field. The ∇× term is the curl operator, which
characterizes the rotation of vector fields. According to the Stokes theorem
(also known as the curl theorem), whenever the curl of a vector U is equal to
some other vector field V, we can equivalently formulate that the circulation
of U along a closed line Γ around any surface Σ is equal to the flux of V
across that surface (see Fig. 1.2 for a typical reprensentation of Γ and Σ).
So for instance, eqs. 1.2 and 1.3 can be re-written as

˛
Γ

E.dl = −
¨

Σ

∂B

∂t
.dS (1.6)

˛
Γ

H.dl =

¨
Σ

(
∂D

∂t
+ J

)
.dS (1.7)

where dl is an infinitesimal curvilinear abscissa along the Γ contour and
dS is an infinitesimal surface element normal to the surface and pointing
towards the exterior of the surface. The directions of dl and dS are set such
that they respect the cork screw rule, that is that if the cork screw were to
rotate along the direction set by dl, then it would move in the direction of
dS (see Fig. 1.2 for a typical reprensentation of S and V ). So interpreting
these last two equations, we can first say that a time varying magnetic flux
density B will generate an electric field E that rotates around it. Similarly,
a time-varying electric displacement field D and an electric current density
field J both generate a rotating magnetic field around them.

The ∇. term is the divergence operator, which characterizes how vector
fields leave closed surfaces. According to the Green-Ostrogradski theorem
(also known as the divergence theorem), whenever some vector field W is
equal to some scalar field ψ, then the flux of W across a closed surface S
surrounding a volume medium V , is equal to the volume integral of ψ in V .

1Free charges are charges that are free to move inside a material. For instance, when
an electric potential is applied between the two extremities of a metallic wire, an electric
current flows through it. This current is composed of a flow of free charges. Alternatively,
there are bound charges in matter. These are electrons bound to an atomic nucleus or
to a molecule for instance. When a field is applied to bound charges, they are put into
motion by the field but the atomic nucleus casts a restoring force that pulls the charge
back towards it.
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Figure 1.2: An illustration of the contours, surfaces and volumes involved
in the integral theorems.

So, applying this to eqs. 1.4 and 1.5, we get

"
S

D.dS =

˚
V
ρdV (1.8)

"
S

B.dS = 0 (1.9)

Here the first equation states that the electric displacement field diverges
from regions of space with positive charge densities and converges to regions
of space with negative charge densities. The second equation is an interesting
and very strong statement. It states that magnetic flux densities cannot
diverge from any point of space. Another way of saying this is to say that
there are no magnetic monopoles2.

For the rest of this course, we shall only consider time harmonic solutions
to Maxwell’s equations. In practice, this means that the solutions have a
time-variation that is sinusoidal. The introduction of time-harmonic fields
is quite convenient here as it enables us to describe the fields in terms of
the frequency at which they oscillate rather than as a function of time. To
do this we use the Fourier transform of each field. For instance, the Fourier
transform of the electric field is

Ê(ω) =

ˆ +∞

−∞
E(t)eiωtdt (1.10)

Using the Fourier transformed field greatly simplifies the problem as every
partial derivative with respect to time is simply replaced by a multiplication

2If the reader were to produce magnetic monopoles, that is, if she were to disprove eq.
1.5, she would be rewarded with the Nobel prize in Physics.
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by (−iω) in the frequency domain3. In what follows, we shall only be inter-
ested in the Fourier transformed fields and drop the hat notation on top of
the fields. So Maxwell’s equations become

∇×E(r, ω) = iωB(r, ω) (1.12)

∇×H(r, ω) = −iωD(r, ω) + J(r, ω) (1.13)

∇.D(r, ω) = 0 (1.14)

∇.B = 0 (1.15)

To find electromagnetic waves that satisfy Maxwell’s equations, we need
additional relations that specify how D relates to E and how B relates to H.
These are called constitutive relations and without them, there would be too
many variables to uniquely solve the system. These constitutive relations
arise from physical considerations on matter. In this course we shall only
be interested in linear isotropic media fro which

D = ε0εE (1.16)

B = µ0µH (1.17)

J = σE (1.18)

where we have introduced the following quantities

• ε0 is the electric permittivity of vacuum (in F/m).

• ε is the relative electric permittivity of the material and has no units.
It is often referred to as the dielectric constant of the material. The
higher this quantity is the larger the electric response of the medium.
It may be thought of a measure of how well a material stores electric
energy.

• µ0 is the magnetic permeability of vacuum (in H/m).

• µ is the reduced magnetic permeability of the material and has no
units. It may be thought of a measure of how well a material stores
magnetic energy. Magnetism in matter is usually very weak and at
optical frequencies, it is actually vanishingly weak, such that for all
practical purposes, we can assume µ = 1.

• σ is the electric conductivity of the material (in S/m or Ω−1m−1). It
describes the degree to which a material conducts electricity.

3To get back to the time domain, one simply uses the inverse Fourier transform of the
field

E(t) =
1

2π

ˆ +∞

−∞
Ê(ω)e−iωt (1.11)

It is straightforward from this expression that differentiating with respect to time is equiv-
alent to a multiplication by (−iω) in the frequency domain.
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Equation 1.18 is also called Ohm’s law and is none other than another
formulation of Ohm’s law as we learn it in electricity. It states that current
density is proportional to the electric field and the proportionality constant
is the conductivity which is none other than the inverse of resistivity. In
electricity, we would say that current I is proportional to voltage U according
to Ohm’s law : I = U/R, where R is resistance.

The constitutive relations presented here are a macroscopic description
of the solid state. The material parameters listed are ensemble properties
that originate in the microscopic constituents of matter.

1.2 From the miscoscopic to the macroscopic

The solid state is made of ensembles of atoms (or molecules4). These atoms
respond to impinging electromagnetic radiation. The superposition of all
these responses gives an average material response which is used in the
constitutive relations given in the previous section.

1.2.1 Dipole moment and polarizability of atoms

Figure 1.3 shows what happens in a material typically when an electromag-
netic field is present. Each atom sees their charged displaced with respect
to their rest position by an amount r and acquire a dipole moment

p = qr (1.19)

where q is the charge that has been displaced. That dipole moment will then
radiate another electric field which will interfere with the external electric
field to produce a different field. Usually the resulting total field propagates
at a speed that is slightly smaller than the speed of light, which gives the
material an apparent refractive index. We shall see in the next section how
this refractive index is related to the constitutive relations. But before that,
we need a theory of how each atom responds to an external electric field. If
we assume the material to be linear, then the dipole moment can be assumed
to be proportional to the local exciting electric field Eloc and the major
term in the proportionality constant is called the electric polarizability and
is usually noted α, which has the units of a volume

p = ε0αEloc (1.20)

In this last relation, Eloc is the electric field near the atom and is different
to the average electric field (usually noted E), which is the field used in the
constitutive relations of the previous section.

4From the point of view of of electromagnetism or optics of the solid state, it does
not matter whether matter is made of molecules or atoms, all that matters is that they
represent an object that exhibits some electromagnetic response. We call these polarizable
units and we shall use the term atom for all polarizable units.
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Figure 1.3: An illustration of how atoms respond to an electric field in a
material. The left-hand sketch represents an atom at rest with an electron
cloud distribution of negative charge around a positive charge nucleus. Un-
der excitation by an external electric field E, the atom acquires a dipole
moment due to the displacement of negative charges with respect to pos-
itive charges. As a matter of fact, both positive and negative charges are
set into motion, but the electron cloud mass is so small compared to that
of the nucleus, that is mostly the cloud that is put into motion. The atom
can be equivalently described by displaced barycenters of positive and neg-
ative charges separated by some distance. The product of charge by the
separation distance is the dipole moment p.

1.2.2 Polarization and the Claussius-Mossoti relation

IF we are to describe the material containing an ensemble of identical atoms
with an average density N (that is, the number of atoms per unit volume),
we should introduce the dipole moment per unit volume, which is none other
than the polarization field

P = Np = Nε0αEloc (1.21)

When considering the response of a material, we are rarely concerned with
the local field and polarizability of the atoms that constitute the material,
and we usually reason on the average external field E. It can be shown that
the local electric field sufficiently near the atom is5

Eloc = E +
P

3ε0
(1.22)

This means that the electric field experienced by the atoms is larger than the
average field in the material and is often called the Lorentz field6. Injecting

5This is true only for cristalline structures for which the local Lorentz field correction
applies.

6In reference to the Dutch theoretical physicist Hendrik Lorentz (1853-1928) who was
awarded the Nobel prize in 1902 for his work on the nature of light and the constituents
of matter.
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the local field in eq. 1.21 and solving for P, we find

P = ε0
Nα

1− Nα
3

E = ε0χE (1.23)

where we have introduced the electric susceptibility χ of the material, which
is a macroscopic quantity.

1.2.3 The complex dielectric constant

Now that we have a macroscopic description of the response of the material,
we can express the displacement field D of the previous section

D = ε0E + P (1.24)

= ε0(1 + χ)E (1.25)

= ε0εE (1.26)

So now we now that we have related the dielectric constant of the material
to its electric susceptibility ( ε = 1+χ), we can relate ε to the polarizability

ε− 1

ε+ 2
=
Nα

3
(1.27)

This last equation is the famous Clausius-Mossotti relation.

Figure 1.4: Frequency dependence of different contributions to the electric
polarizability in a material. This graph was taken from [1]

The total polarizability (and the dielectric constant) can be decomposed
according to its three major contributions : an electronic, and ionic and a
dipolar contribution (see Fig. 1.4). The electronic contribution comes from
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the electronic dispacement of the electron cloud with respect to the atomic
nucleus. The ionic contribution is due to the motion of an ion with respect
to any other ion. The dipolar contribution arises due to molecules that
exhibit a permanent electric dipole moment that may change its orientation
when an electric field is applied. As can be seen, at optical frequencies,
contributions to the dielectric constant are exclusively of electronic origin.

We know that µ = 1 for most materials at optical frequencies and that
ε describes the electric response due to the polarizability of atoms. We still
have to account for the electric conduction of materials. This information is
carried by the constitutive relation for the current density : J = σE. We can
simplify the problem by noticing that this proportionality between current
and electric field is somewhat similar to the proportionality between electric
displacement and electric field : D = ε0εE, so eq. 1.13 can be re-written as

∇×H = −iωD + J (1.28)

= −iωε0εE + σE (1.29)

= −iωε0

(
ε+ i

σ

ε0ω

)
E (1.30)

= −iωε0ε̃E (1.31)

where we have introduced a complex dielectric constant ε̃ with a real part
equal to the dielectric constant considered thus far and an imaginary part
proportional to the conductivity. The tilde notation is there just to distin-
guish it from the real quantity ε. For the rest of this course, we shall omit
the tilde and note ε the complex dielectric constant and ε′ its real part and
ε′′ its imaginary part

ε = ε′ + iε′′ = ε′ + i
σ

ε0ω
(1.32)

Since the imaginary part of the dielectric constant is related to conductivity,
this means that it is actually associated with transfer of energy to free elec-
trons. These free electrons thus absorb electromagnetic energy to acquire
kinetic energy and eventually dissipate it in the form of heat through colli-
sions (Ohm’s law). Since all materials necessarily have a positive conductiv-
ity, meaning that they dissipate (and do not create) energy, the imaginary
part of the dielectric constant is necessarily positive in the convention we
have used7. As a matter of fact, the imaginary part describes any and all
types of absorption of photons.

1.2.4 Basic optical properties of the solid state

Before moving further, we should introduce five important material proper-
ties that characterize how a material behaves. We shall focus the definition

7The convention we have used is to assume time-harmonic fields assuming a phasor
e−iωt. Had we chosen eiωt, we would have had the result that dissipative materials exhibit
a negative imaginary part of the dielectric constant. This is just a matter of convention.
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of these properties on the description of ε, but it could equivalently have
been made by considering α or χ.

Dispersion

We see from Fig. 1.4, that polarizability actually depends on the frequency
of the electromagnetic field and that the same is true for the dielectric con-
stant. This phenomenon is called dispersion and is due to the fact that
atoms have their own resonance frequency and they cannot always follow
the field that is driving them. They take some time to respond to an exci-
tation. So under excitation by a driving field, the material response is due
to the instantaneous field at some time t as well as a continuous sum of all
prior fields. As a result, we should always bare in mind that whenever we
write α or ε, we actually mean α(ω) and ε(ω). We shall see a little further
on, what models can be derived to describe the frequency dependence of α
and ε. So a material that exhibits dispersion is said to be dispersive.

Homogeneity

A material is said to be homogenous if its properties are independent of the
point considered within the material. So this means that ε is independent
of the position vector r.

Isotropy

A material is said to be isotropic if its properties are independent of the
orientation of the electric field E. Mathematically, the consequence of this
property is that ε is a scalar. A material that is not isotropic is called
anisotropic and the dielectric constant becomes a tensor

D = ε0 [ε] E (1.33)

This means that each component of D is expressed as a superposition of
every component of E

Di = ε0

∑
j=x,y,z

εijEj (1.34)

Linearity

A material is said to be linear if the relation between the polarization of the
material and electric field is linear

P = ε0χE (1.35)

In practice, this is only true for small enough fields. As soon as the amplitude
of the field becomes large, the response of the atoms become nonlinear and
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can be (sometimes) descried as power expansions of the electric field. The
field dedicated to the study of theses processes is called nonlinear optics
and emerged with the invention of lasers that produce intense fields. These
processes are very much outside the scope of this lecture, but we shall just
say that they enable (among many applications) the generation of frequency
doubling which is the process by which a green laser pointer can be obtained
since green light does not correspond to any known natural laser transition
in matter.

Locality

A material is said to be local if its response only depends on the point
at which it is excited. In real life, this is not true. The response of a
material is always dependent on the field at other points in the material and
as a result, materials are intrinsically non-local (we also say that they are
spatially dispersive8)

1.3 The propagation equation

In this section, we shall show how light can travel (propagate) through
matter according to Maxwell’s equations

1.3.1 Establishing the propagation equation

Starting with eq. 1.12, and eq. 1.13 as well as the consitutive relation for
B and the complex dielectric constant, we can write

∇×∇×E = iω (∇×B) (1.36)

= iµ0ω (∇×H) (1.37)

= µ0ω
2D (1.38)

= ε0µ0εω
2E (1.39)

According to the regular vectorial operations, we have that ∇ × ∇ × E =
∇(∇.E)−∆E, where ∆ represents the Laplacian operator. Also, we know
that ε0µ0 = 1/c2 and since the material is linear, isotropic and local, we
have that ∇.E = ∇.D/(ε0ε) = 0 (according to eq.1.14). As a result, we
may write

∆E + ε(ω)
ω2

c2
E = 0 (1.40)

We recognize this equation as being the Helmoltz equation for which there
are known solutions that are the so-called plane wave solutions. This equa-
tion is also known as the propagation equation for electromagnetic waves.

8As opposed to temporally dispersive when we spoke of dispersion.
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1.3.2 Plane Wave solutions

The Helmoltz equation admits plane wave solutions that are typically writ-
ten as9

E(r, ω) = E0 exp (ik.r− iωt) (1.42)

where k is called the wave vector. With such solutions, any time the ∇
operator is used, it can be replaced by ik and the ∆ is the same as a
multiplication by −k2 = −|k|2. So introducing this fact into eq. 1.40, we
find the elegant dispersion relation of the material

k(ω) =
√
ε(ω)

ω

c
=
√
ε(ω)k0 =

√
ε(ω)

2π

λ
(1.43)

where we have introduced the vacuum wavevector k0 and where λ is the
wavelength of the plane wave. So plane waves are sinusoidal waves that
propagate in the direction set by k. The electric field oscillates perpendicu-
larly to k along the direction set by E0 inside the material10. The direction
of E is called the polarization of E, which might be confusing, since we have
called polarization the average polarizability per unit volume, but usually
the context in which these terms are used enables one to understand which
polarization we are talking about. The typical structure of a plane wave is
shown on Fig. 1.5 and it travels with a phase velocity

vφ =
c√
ε(ω)

=
c

n(ω)
(1.45)

where we have introduced the complex index of refraction n(ω) =
√
ε(ω).

Before we move further into the interpretation of the complex refractive
index, we should notice that applying the ∇ operator to a plane wave field
amounts to using the ik operator. In other words

∇×E = ik×E (1.46)

∇.E = ik.E (1.47)

This simplification will prove useful when we shall look at energy balances
inside the solid state.

9Here we are using the complex electric field, which considerably simplifies calculations.
The real electric field can be be obtained simply by taking the real part of the complex
field. So here, it would simply be

E(r, ω) = E0 cos (ik.r− iωt) (1.41)

10The fact that E and k are orthogonal is an immediate consequence of eq. 1.14 of
Maxwell’s equations. Indeed, we have that ∇.D = 0, which means that iε0εk.E = 0. In
the end

k.E = 0 (1.44)

and as a result, k ⊥ E.
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Figure 1.5: Spatial profile of a plane wave. The electric field oscillates
perpendicularly to the direction of propagation set by k. They are called
plane waves because any plane that cuts the wave perpendicularly to k is a
plane of constant field. We also call them planes of constant phase, because
k.r is constant across the plane. [1]

Exercise

1. Assuming a plane wave for the electric field E, demonstrate eqs. 1.46
and 1.47.

2. Assuming a plane wave for the magnetic field H as well, rewrite all of
Maxwell’s equations using k instead of ∇. Deduce that k ⊥ E ⊥ H
and that (k,E,H) form a right-hand set.

3. Re-write the propagation equation and establish the dispersion rela-
tion (eq. 1.43).

1.3.3 The complex index of refraction

At this stage, we ought to specify what it means to have a complex index
of refraction. Let us consider a direction r that is parallel to the wavevector
k = ku = nωc u, where u is a unitary vector11. For simplicity, let us assume
that r = xu is along the x-axis. In that case, the plane wave solution of eq.
1.42 becomes

E(r, ω) = E0 exp
(
in
ω

c
x
)

(1.49)

11To obtain such a unitary vector, one just has to divide the wavevector by its norm

u =
k

|k| (1.48)

.
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Now let us introduce the fact that n = n′+in′′, where a single prime denotes
the real part, while a double prime denotes the imaginary part. Injecting
this complex expression of n into our plane wave solution, we find

E(r, ω) = E0 exp
(
in′

ω

c
x
)

exp
(
−n′′ω

c
x
)

(1.50)

So we see that we have a propagation term (ein
′ω/c) that simply adds phase

to the field and an exponentially decaying term (e−n
′′ω/c) and thus the imag-

inary part actually accounts for a decaying field. Fields decay due to absorp-
tion. For this reason, the imaginary part of the refractive index is always
associated to the absorption of the material. While the real part is associated
with refraction at an interface and phase accumulation through propagation
in the bulk of a material.

We often use the absorption coefficent α, that is defined such that the
exponential decay of the field is simply e−αx/2. The reason that the term
inside the exponential is divided by 2 comes from the fact that the absorption
coefficient is actually suited to measurements of decaying intensity. For
reasons that will become clear, a little later on in the course, the intensity of
the light I(x, ω) (expressed in W/m2) is proportional to the norm squared12

of the field (I(x, ω) ∝ |E|2). So eq. 1.50 becomes

I(x, ω) = I0e
−α(ω)x (1.51)

Here, you might recognize Beer-Lambert’s law of exponential attenuation of
light propagating through a medium. Chemistry students often learn about
this law for light propagating through a solution. As it turns out, this is also
true for light propagating through a solid. In both cases, characterizing α(ω)
(by absorption spectroscopy basically) actually provides us with important
information on a solid. So identifying this absorption coefficient with the
term inside the exponential in eq. 1.50, we find

α = 2n′′
ω

c
= 4π

n′′

λ
(1.52)

where we have used the fact that ω = 2π cλ . We see that α has units of
inverse length, so another quantity that is often used in experiments is the
penetration depth, also call the attenuation length or extinction length

le =
1

α
=

λ

4πn′′
(1.53)

This length characterizes the distance after which, the intensity has de-
creased e−1 ≈ 37% of what it was.

12We also say the magnitude squared.
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Figure 1.6: Spectrum of real (red) and imaginary (blue) parts of the refrac-
tive index of crystalline silicon.

Exercice

Figure 1.6 provides the spectrum of the real and imaginary parts of crys-
talline silicon.

1. Determine the extinction length of silicon at λ = 400 nm.

2. At that wavelength, would it be possible to detect a beam of light that
has gone through a 275 µm thick silicon wafer ?

3. What is the attenuation after propagation through 100 nm of silicon?

4. Still at λ = 400 nm, determine the real and imaginary parts of the
dielectric constant ε of silicon.

5. What are the expressions of the real and imaginary parts of the com-
plex index of refraction as a function of the real and imaginary parts
of the dielectric constant.

1.4 Reflectance, Transmittance and absorption

The complex refractive index is a powerful material property since it governs
a certain number of physical observables such as reflectance, transmittance
and absorption. But perhaps the most famous phenomenon is the phe-
nomenon of refraction, which is the first property to have been observed in
the solid state that required introducing a refractive index and actually gave
its name to it. The problem is as described on Fig. 1.7. We shall consider a
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Figure 1.7: Situation of an impinging electromagnetic plane wave (of
wavevector ki) on an interface between two media of index n1 and n2 for two
polarization configurations (Transverse Electric and Transverse Magnetic).
The transverse electric (resp. transverse magnetic) configuration is that in
which the electric (resp. magnetic) field is polarized perpendicularly to the
incidence plane. There is a transmitted wave (of wavevector kt) that un-
dergoes refraction and a reflected wave (of wavevector kr). Adapated from
wikipedia.

plane wave impinging on the interface between two media. The top medium
is assumed to have an index n1 and the bottom medium is assumed to have
an index n2 for that wave13. A plane wave of wavevector ki is incident on
an interface at an angle θ1 with the normal to the interface. It will transfer
part of its energy to a transmitted wave (of wavevector kt) that will un-
dergo refraction and part to a reflected wave (of wavevector kr). Refraction
means that the outgoing transmitted wave will leave with and angle θ2 that
is different to θ1. The following section will provide the reflection and trans-
mission coefficients as a function of the refractive indices of both the top
and bottom media and the angles involved.

1.4.1 The Fresnel coefficients

The Fresnel coefficients give the expressions of the reflection r (and transmis-
sion t) coefficients that are defined as the ratio between the reflected (resp.
transmitted) and incident electric field. There are two possible illumination

13It is important to specify that it is for that wave as we are assuming a plane wave
that oscillates at a specific frequency ω. This means that the refractive index is only valid
for a plane wave at that frequency
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configurations (we sometimes refer to these as modes). The transverse elec-
tric (TE) configuration (see Fig. 1.7) is a situation in which the electric field
is polarized perpendicularly to the plane of incidence. The plane of incidence
is the plane containing ki and the interface (x̂ axis on Fig. 1.7). The trans-
verse magnetic (TM) configuration is a situation in which the magnetic field
is polarized perpendicularly to the plane of incidence. Each configuration
exhibits different reflection and transmission coefficients

rTE =
ETE
r

ETE
i

=
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(1.54)

tTE =
ETE
t

ETE
i

=
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
(1.55)

rTM =
ETM
r

ETM
i

=
n2 cos θ1 − n1 cos θ2

n1 cos θ2 + n2 cos θ1
(1.56)

tTM =
ETM
t

ETM
i

=
2n1 cos θ1

n1 cos θ2 + n2 cos θ1
(1.57)

where θ2 is given by the Snell-Descartes law which simply expresses the
continuity of the tangential component of the wavevector

n1 sin θ1 = n2 sin θ2 (1.58)

All these reflection and transmission coefficients are complex numbers. In
particular this means they can all be written in the form of a magnitude
times a phasor (eiφ), so for the reflection and transmission coefficients for
instance, this means r = |r|eiφr and r = |t|eiφt .

1.4.2 Energy Balances

The Poynting vector is a vector field that describes the energy flux of an
electromagnetic field and is defined by

S = E×H (1.59)

It has the same direction as the wavevector k and as a result, it points
toward the propagation direction. It has units of watts per square meter :
W/m2. It represents the instantaneous power flow. Taking the time-average
of the Poynting vector gives the average power flow

〈S〉 =
1

2
Re (E×H∗) (1.60)

where the star superscript denotes complex conjugation. The average inten-
sity of the light is given by the norm of the previous time-averaged vector
and we can show

I = |〈S〉| = ε0cn
′

2
|E|2 (1.61)
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Figure 1.8: Illumination configuration of slab of material of length L defining
Reflectance (R) and Transmittance (T ).

So we see as was suggested previously that the intensity is proportional to
the squared magnitude of the electric field. Retrieving the complex reflec-
tion r and transmission t coefficients presented in the previous section is
quite difficult and requires special experimental techniques that involve in-
terferometry. Most basic experiments usually measure the intensity of light
reflected (Ir) and/or transmitted (It) by a slab of material of height h when
illuminated by a beam of intensity I0 (see Fig. 1.8). Since intensity is
proportional to |E|2, the measure quantities are actually

R = Ir
I0

= |r|2 (1.62)

T = It
I0

= |t|2e−αL (1.63)

where R is referred to as the reflectance of the material, T is the transmit-
tance, α is the absorption coefficient and L is the distance over which light
has propagated inside the material. Of course, depending on the illumina-
tion configuration (TE or TM), we should use the corresponding coefficient.
Without any loss of generality, these observables depend on wavelength (or
frequency), the angle of incidence (θ1) and of course the index of refraction
of the material. R and T can both respectively be interpreted as the frac-
tions of incident power that are reflected and transmitted by the material.
As a result, energy conservation imposes that the rest of the energy is dissi-
pated in the material (usually in the form of heat) corresponding to absorbed
power. So knowing R and T enables the determination of absorption14

A = 1−R− T (1.64)

14This line of reasoning is valid only in the case of weakly scattering materials. If the
material scatters a lot (at its surface or its volume), then 1 − R − T is actually called
extinction and is the sum of absorption and scattering.
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Absorption should not be confused with absorbance which is often used in
Chemistry. Indeed absorbance is

A′ = − lnT = αL =
L

le
(1.65)

where we have re-introduced the extinction length le.

Exercise

1. Demonstrate eq. 1.61.

2. Using the graph on Fig. 1.6, determine the reflectance and transmit-
tance under normal incidence of a silicon thin film that is 500 nm thick
at a wavelength of 400 nm. Calculate the absorption ?

3. At an incidence angle of 45 deg, what is the distance L over which
light will propagate inside the material? Determine the reflectance
and transmittance for a TM-polarized wave.

4. Find the brewster angle θB which is defined as the angle of incidence
at which the reflected TM-polarized light is canceled. At that angle,
what is the propagation length inside the silicon film.

1.5 Models for the dielectric constant

Now that we have the dielectric constant (or equivalently the refractive
index), we have a material parameter to describe almost every type of ma-
terial. We can be a little more thorough however by relating the different
kinds of microscopic charge interactions and deduce different models for the
dielectric constant. There are two major models that are based on whether
the electron is free to move in the solid state or bound to atomic nuclei.

1.5.1 The free electron model : Drude model

The Drude model is the model that is concerned with describing free elec-
trons. Is is suited to the description of metals for instance. Under excitation
by an electromagnetic field E in the material, a free electron is exposed to
the Lorentz force (eq. 1.1) and following Newton’s second law, we have

m
d2r

dt2
= −eE−mΓ

dr

dt
(1.66)

where r is the position vector, m is the mass of the electron, e is the electron
charge and Γ is the free electron collision frequency that accounts for dissi-
pation of the kinetic energy of electrons. We have neglected the magnetic
field force. Assuming a time-harmonic solution and the Fourier transform
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of the fields, we may rewrite the previous differential equation and solving
for r, we find

r =
e

m

1

ω2 + iωΓ
E (1.67)

This model basically describes the fact that energy oscillates between the
kinetic energy of electrons and the oscillating electric field in the metal and
collisions between electrons will dissipate the energy. To relate this to the
dielectric constant, we can use the expression of the polarization P, which
is nothing more that the dipole moment density15

P = ε0(ε− 1)E = −Ner (1.68)

where N is the free electron density in the material. Substituting r with its
expression from eq. 1.67, we get

ε(ω) = 1−
ω2
p

ω2 + iΓω
(1.69)

where we have introduced the plasma frequency

ωp =

√
Ne2

ε0m
(1.70)

Equation 1.69 is a very important formula that is often used for metals and to
describe semiconductors above the bandgap. A word of caution though,we
should keep in mind that in establishing it, we have only considered free
electrons, but materials may have many other types of resonances that oc-
cur at frequencies that are much larger than the plasma frequency (in the
limit ω → ∞). Instead of going too much into the details of these partic-
ular charge resonances, we simply assume that they will contribute with a
constant background dielectric constant, which of course will not be equal
to 1 contrary to what eq. 1.69 might suggest. So instead, we shall simply
remember that the Drude model for the dielectric constant is as follows

ε(ω) = ε∞ −
ω2
p

ω2 + iΓω
(1.71)

Figure 1.9 shows the typical variations of the real and imaginary parts of
both the dielectric constant and the complex refractive index following the
Drude model. Gold and Silver are typically described with this model at
frequencies far enough from the plasma frequency. Figure 1.10 compares
the Drude model to empirical values of the real and imaginary parts of the
dielectric constant of gold.

15Remember that P = ε0χE and that ε = 1 + χ.
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Figure 1.9: Graph showing the real and imaginary parts of the dielectric
constant and the refractive index following the Drude model.

Figure 1.10: Dielectric constant ε(ω) following the Drude model (continuous
line) fitted to experimental data (red dots) from Johnson and Christy [2].
These graphs were taken from [3]. Interband transitions make the Drude
model inaccurate at higher frequencies.

Exercise

1. Compute the real and imaginary parts of the dielectric constant as-
suming a Drude Model. What can be said about the real part ε′. Draw
a graph of the variations of ε′(ω) and ε′′(ω)

2. Assuming Γ� ωp, what can be said of the complex index of refraction
of the Drude material?

1.5.2 The bound electron model : the Lorentz model

In a canonical dielectric material, there are no free charges. The polarization
of the material is completely determined by the atoms that constitute the
material that can essentially be viewed as electrons bound to an atomic
nucleus. We can use the Lorentz oscillator model (in analogy to a mass on
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a spring). In that case, the equation of motion is

m
d2r

dt2
= −eE−mω2

0r−mγdr
dt

(1.72)

where ω0 is the resonance frequency of the bound oscillation and where
we have used γ as a damping frequency to distinguish it from the collision
frequency of the Drude model. In this case, we find the following relation
for the motion of the electron

r =
e

m

1

(ω2 − ω2
0) + iωγ

E (1.73)

Then using the same sort of identification as was done in the previous sec-
tion with the polarization, we find the following relation for the dielectric
constant

ε(ω) = 1 +
ω2
p

(ω2
0 − ω2)− iωγ

(1.74)

This model of the dielectric constant is particularly well suited to the de-
scription of dielectric materials. Figure 1.11 shows the typical dispersion of
the Lorentz model.

Figure 1.11: Graph showing the real and imaginary parts of the dielectric
constant and the refractive index following the Lorentz model.

The Lorentz model is so powerful, it can be generalized to many types
of electrons by introducing a summation

ε = 1 +
∑
i

ω2
p,i

ω2
0,i − ω2 − iωγi

(1.75)

where ωp,i, ω0,i and γi are the plasma, resonant and damping frequencies
respectively for the ith type of electron. And as a matter of fact, it may be
used to describe any type of photon interaction with an oscillating particle.
So it can be used to describe phonon-photon interaction as well.
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Looking at frequencies above ω0, we see that the Lorentz model behaves
somewhat like the Drude model. This means that certain dielectrics (semi-
conductors in particular), can sometimes be described as metals in certain
frequency ranges.
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Chapter 2

Optical Properties of metals

As we have seen in the previous chapter, the dielectric constant of metals
is best described by the Drude model. This has important consequences on
the optical properties of solids. For one thing, it tells us how Fermi electrons
are collectively excited and how they interact with light.This chapter is a
brief introduction to plasmons, that are a plasma oscillation that can be
directly calculated from Maxwell’s equations.

2.1 Volume plasmons and transverse optical plasma
modes

Volume plasmons

Metals are made of arrays of atoms that have electrons that are easily lost.
When these electrons are lost, they leave positive ions behind. As they
are freed, they form a sort of sea of free charges. When an electric field is
present, the sea of electrons shifts, which creates regions of positive charge
composed of the atoms from which the electrons have left and regions of
negative charge where the electrons have shifted. These accumulations of
charge are themselves going to create an electric field which will pull the
electrons back towards their initial position, but since they have mass, they
will overshoot their position and reverse the electric field. As time goes by,
the back and forth sloshing of electrons oscillates and these oscillations can
be sustained at the plasma frequency ωp. This oscillation is what is called a
(volume) plasmon. Going back to the Drude model of the dielectric constant
of a metal (and neglecting the collision frequency), we have

ε(ω) = 1−
ω2
p

ω2
(2.1)

29
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where we recall the expression of the plasma frequency

ωp =

√
Ne2

ε0m
(2.2)

We see that ε(ωp) = 0. This means that the electric displacement is null
and following Maxwell’s equation we can have ∇.D = 0 with ∇.E 6= 0. In
the end, this means

k.E 6= 0 (2.3)

and these correspond to longitudinal optical modes of oscillation. So a plas-
mon propagates through a plasma much like a sound wave. The following
table shows typical values of the plasma frequency and we see that these are
generally in the ultra-violet. Certain classes of semiconductors may some-
times be described as metals at very high frequencies. Silicon for instance
has a plasma frequency of ~ωp = 16.0 eV, which corresponds to a wavelength
of ∼ 77 nm.

Metal Symbol Plasma Frequency (THz) Wavelength (nm)

Aluminum Al 3624 82.78
Chromium Cr 2601 115.35

Copper Cu 2620 114.50
Gold Au 2185 137.32
Nickel Ni 3852 77.89
Silver Ag 2180 137.62

Due to the longitudinal nature of these charge oscillations, volume plas-
mons do not couple to transverse electromagnetic waves and thus cannot be
excited by a light field. They require particle impact in general.

It should be mentioned for completeness, that longitudinal oscillations
can also be excited in dielectrics. This happens because valence electrons
oscillate collectively with respect to ion cores.

Transverse optical plasma modes

In the previous chapter, we had established the following dispersion relation
in an linear, isortopic and homogenous material

k =
√
ε(ω)

ω

c
(2.4)

Injecting the Drude model for the dielectric constant into this dispersion
relation and re-arranging the terms so as to express frequency as a function
of wavevector, we find

ω

ωp
=

√
1 +

c2k2

ω2
p

(2.5)
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So already, we see that for ω < ωp, k becomes a purely imaginary quantity,
and the waves will decay exponentially and accumulate no phase. For these
frequencies, light will be completely reflected and will not penetrate the
metal at more than the penetration depth. This is consistent with what
we know of the refractive index of metals, namely that for such frequencies
n′′ � n′ and n′′ � 1 and as a result, reflectance (under normal incidence
here) is

R =

∣∣∣∣n′ + in′′ − 1

n′ + in′′ + 1

∣∣∣∣2 ≈ 1 (2.6)

However, for ω > ωp, we see that these optical modes exist and are free to
propagate (see Fig. 2.1). In the high frequency limit, they tend towards
free-space propagation (ω ≈ ck).

Figure 2.1: Dispersion relation for transverse optical modes in metals.

The group velocity is defined as

vg =
∂ω

∂k
(2.7)

which is the slope of the dispersion curve. We see that as the plasma fre-
quency is approached, vg → 0, which is sometimes referred to as a slow
optical mode.
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2.2 Surface plasmons

Surface plasmons are coherent delocaliazed electron oscillations that exist
at the interface between a material of negative dielectric constant (a metal
typically) and a material of positive dielectric constant (a dielectric). They
are surface waves that are guided along the interface and are transverse
magnetic1 and have the following form

H = H0e
iβzeikd,mxŷ (2.8)

where we have used the frame defined in Fig. 2.2. β is called the propagation
constant and governs the propagation of the surface plasmon along the z-
direction, while kd,m is simply the transverse component of the wavevector
associated with the surface plasmon field, which depends on whether we are
considering the field in the metal or in the dielectric. So kd = εdω/c in
the dielectric (where the dielectric constant is εd) and km = εmω/c in the
metal (where the dielectric constant is εm). These guided waves are often
referred to as Surface Plasmon Polaritons (SPP). The electric field of the

Figure 2.2: Illustration of surface plasmon polaritons. They are localized
electromagnetic modes coupled to charge density oscillations bounded to a
metal/dielectric interface.

surface plasmon can be deduced from the magnetic field, using Maxwell’s

1Here, this means that the magnetic field H is polarized parallel to the interface.
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equations. It has two components

Ex = −i H0

ωε0εd,m
kd,me

iβzeikd,mx (2.9)

Ey = − H0

ωε0εd,m
βeiβzeikd,mx (2.10)

The propagation constant is given by

β =
ω

c

√
εdεm
εd + εm

(2.11)

This dispersion relation is shown on Fig. 2.3, where we have used a Drude
model for εm with negligeable damping. Because SPPs are bound to an
interface, these excitations are located to the right of the light lines for
the corresponding dielectric (of dispersion relation ω = ckd). Since they
have higher wavevectors than those of light in the dielectric, they cannot
be excited simply by shining light from the dielectric side2. They require
a special kind of phase matching that resorts to grating or prism coupling.
For small wavevectors, the SPP propagation constant is very close to kd
and almost follows the light line. In such cases, the SPP field extends over
many wavelengths into the dielectric and are also referred to as Sommerfeld-
Zenneck waves. As in the transverse optical modes in the bulk above the
plasma frequency, we see that near the frequency ωsp, there is a horizontal
asymptote meaning that the group velocity is tending towards vanishingly
small quantities. Of course, this is an idealized version of the dispersion
diagram as we have neglected the collision frequency in the metal.

Exercise

1. Using the Drude model and neglecting the collision frequency, give the
relation of β as a function of ω/ωp and sketch the dispersion diagram.
In the case of air, what is the value of ω/ωp for which vg → 0.

2. Using a configuration (see Fig. 2.4) in which a thin film of metal is
evaporated on a slab of dielectric of dielectric constant εd, how can
light incident from the dielectric side couple to an SPP on the air side
? At what angle of incidence will the coupling be resonant ?

2We sometimes say, that light in the dielectric does not have enought momentum to
couple to the SPP. This is because the momentum of a quantum of SPP is ~β and the
momentum of a quantum of light in the dielectric is ~kd.
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Figure 2.3: Dispersion relation of SPPs at the interface between a Drude
metal with negligible collision frequency and air (gray curves) and silica
(black curves). Graph was taken from [3]

Figure 2.4: Sketch of the Kretschmann configuration for the excitation of
surface plasmon polaritons on the air side by using a dielectric prism.



Chapter 3

Optical properties of
nanoparticles

3.1 Brief reminder of crucial physical concepts

As we have seen in the first Chapter, light is an electromagnetic wave. Here
we shall start by producing a brief reminder of key physical concepts that
will enable us to move forward with the description of nanoparticles. This
means that it is the joint oscillation of an electric wave E and a magnetic
wave B, both of which are vector fields. Most of the time in optics, we are
only interested in representing the electric field. As all waves in physics,
it is characterized by its wavelength λ, which is the distance between two
consecutive crests. Another important parameter is a vectorial quantity
called the wavevector k. Its norm is 2π/λ and it is directed in such a
manner that the trihedron formed by (k,E,H) is right-handed.

Figure 3.1 is an illustration of one such wave, which is a sinusoidal func-
tion of x. The wavector points in the direction of propagation of light and
governs how it accumulates phase. We may write

k =
2π

λ
ux = kux (3.1)

where ux is the normal vector in the x-direction, which we set as the direction
of propagation. So the electric field writes

E = E0 cos

(
2π

λ
x+ φ0

)
ux (3.2)

where E0 is the electric field amplitude, the first term in the cosine function
is called a propagator and is equal to k × x and φ0 is called the phase.
The phase governs the value that the electric field norm will take at the
coordinate orgin x = 0.

It should be noted first that the propagator is sometimes included in the
phase, such that we refer to the phase φ of the wave as being the sum of the

35
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Figure 3.1: Illustration of a wave with key quantitites that characterize de
wave. The wave is taken to be a sinusoidal function of x (E(x)). E0 is the
amplitude of the wave, λ is the wavelength, k is the wavenumber and φ0 is
the phase.

propagator and φ0. Second, we often use complex notation to represent the
electric field as it considerably simplifies algebra and analysis

E = E0e
iφux (3.3)

Of course, the norm of the field given in eq. 3.2 is simply the real part of
this complex notation.

3.1.1 Plane Wave and intensity

A concept that is often used is that of the plane wave. If we superimpose
several sinusoidal fields as the one represented in Fig. 3.1 in a direction
orthogonal to the plane of the page, we get what we call a plane wave (see
Fig. 3.1(a)). This is a just a generalization of the sinusoidal wave to a
plane. The lines that are in the same phase state are called wavefronts.
For instance, we may consider the wavefront by connecting the crests of all
waves (see dashed lines on Fig. 3.2(a)). In free-space, the propagation of
the energy carried by the plane wave is directed along what is called the
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Poynting vector. Its field lines are represented by the black arrows parallel
to the x-axis in Fig. 3.2(a). So a plane wave can either be represented by
its wavefront or by its field lines.

Figure 3.2: Illustration of a plane wave. (a) Simple sketch of how a plane
wave is generated from the simple sinusoidal wave. (b) Color map repre-
sentation of the electric field oscillation of a plane wave propagating in the
direction of k.

Light is composed of photons. So the total energy carried by light is the
number of photons N multiplied by the energy of a single photon

E = N
hc

λ
(3.4)

where h is Planck’s constant and c is the speed of light in vacuum. Knowing
the energy, we can define fluence F , which is the flow of energy through a
flat surface of area S (see Fig. 3.3). In other words, it represents (in energy),
the amount of photons passing per unit area. Fluence is expressed in J/m2.

F =
E
S

(3.5)

In this last equation, the energy has to be taken as the energy passing
through the surface of area S. This is equivalent to counting the amount
of photons going through S and multiplying it by the energy of a single
photon.
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Figure 3.3: Illustration of light flowing through a fictitious surface of area
S. The black arrows represent the Poynting vector field lines.

The intensity is the power P flow per unit area. This means that it is
the amount of energy per unit second flowing through S, so it is simply the
time derivative of the fluence1. From Maxwell’s equations, it can be shown
that in free-space the intensity is proportional to the magnitude square of
the electric field

I =
P
S

=
dF
dt

=
1

2Z0
|E|2 (3.6)

where Z0 =
√
ε0/µ0 is the impedence of free-space. The intensity of light,

as is defined here, is expressed in W/m2.

3.1.2 Scattering formalism and the optical theorem

Let us consider a particle under uniform illumination by a plane wave (see
Fig. 3.4). This means that the intensity is the same at every point in space
and is proportional to the magnitude square of the incoming field Ein

I ∝ |Ein|2 (3.7)

Under this constant illumination, the object polarizes and its polarization
P will radiate a field, which we may call the scattered field and the induced
polarization currents in the particle will cause some dissipation of energy
through ohmic losses. The power absorbed is written Pabs and is due to the
fact that induced current densities within the particle will generate losses
through charge collisions2. The total electric field is the superposition of the

1We should stress at this point that, for pedagogical purposes, the way we define energy,
fluence and intensity is a simplification of the rigorous definitions. Rigorously, intensity is
the norm of the Poynting vector Π = 1

µ0
E×B. Fluence is the time integral of intensity:

P =
´
Idt and the power flowing through any surface Σ (open or closed) is PΣ =

˜
Σ

Π.dS,
where dS is an infinitesimal area vector orthogonally oriented with respect to the surface.

2The total absorbed power is obtained by integrating over the entire volume contained
within a closed surface Σ encapsulating the particle, the density of power absorbed: Pabs =
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incoming (Ein) and scattered field (Escatt)

ET = Ein + Escatt (3.8)

A corresponding scattered intensity may be defined which is proportional to
the magnitude squared of the scattered field Iscatt ∝ |Escatt|2. The scattered
power is the flux of the scattered intensity across a closed surface Σ enclosing
the particle3

Pscatt =

‹
IscattdS (3.9)

The scattering cross-section is the proportionality constant between the

Figure 3.4: Illustration of the scattering formalism for a single particle.

scattered power and the incoming intensity[4]

σscatt =
Pscatt

I
(3.10)

Similarly, an absorption cross-section may be defined

σabs =
Pabs

I
(3.11)

˝
J.ETdV , where J is the current density and dV is an infinitesimal volume element

within Σ.
3Here also, the rigourous definition of the power scattered by the particle requires using

the Poynting vector field of the scattered field: Π = 1
µ0

Escatt×Bscatt and then calculating

its flux across a closed surface Σ ecompassing the particle: Pscatt =
‚

Σ
Πscatt.dS. In eq.

3.9, the double integral is necessary because the intensity distribution is not constant over
all perpendicular direction to Σ.
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The cross-sections may also be viewed as the probability per unit area of an
event (absorption or scattering) occuring on a particle.

At this point, we need to keep track of energy and make sure that the
definitions of the scattering cross-sections do not violate energy conservation.
Simply expressed in terms of power, energy conservation imposes that

Pin = PT + Pabs (3.12)

where Pin ∝|Ein|2 is the impinging power and PT is the power carried by
the total elecric field. Since the total electric field is the interference be-
tween the incoming electric field and the scattered electric field, it will be
proportional to the sum of the scattered and incoming fields and as a result
this interference term will impact the total power as follows

PT ∝ |Ein + Escatt|2 (3.13)

∝ |Escatt|2 + |Ein|2 + 2<[Escatt.Ein] (3.14)

∝ Pscatt + Pin − Pext (3.15)

In this last equation, we see that the total power may actually be expressed
as the sum of three terms. Perhaps, the most peculiar term is actually the
last term which is the extinction power and corresponds to a dot product
term between the scattered field and the incoming field. Of course these
two fields are orthogonal most of the time except in the forward scattering
direction, i.e. ahead of the particle on Fig. 3.4. This power is taken into
account negatively so as to make sure that the total power does not exceed
the incoming power.

Next, by injecting eq. 3.15 into eq. 3.12, and express the powers in
terms of scattering cross-sections instead of powers, we get the famous light
scattering property for an object, known as the optical therem

σext = σscatt + σabs (3.16)

In other words, extinction is equal to scattering plus absorption. At first
glance, it may seem strange that the power carried by some interference term
between the scattered and incoming light be equal to the power carried by
the scattered light plus some additional losses, but we should keep in mind
that this interference term is only the amount of power that does not go
trough in the forward direction. It is a ”lack” of power so to speak. The
optical theorem just specifies that this absence is equal to what has been
scattered in all directions and what has been absorbed4.

4Most experimentalists who are not opticial scientists and use absorption spectroscpy to
measure the optical properties of a solution – say of nanoparticles – will plot the absorption
as a function of wavelength. But for an optical scientists, this plot is actually wrong, since
the quantity measured is actually the intensity of light in the forward direction, which as we
have pointed is actually the interference between incoming light and light scattered in the
forward direction. As a result, it is extinction that is actually measured. The information
contained in these experiments is the sum of light absorbed by the nanoparticles contained
in the solvent and light scattered by the nanoparticles in every direction.
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3.1.3 Scattering efficiency

It is important to know that for sub-wavelength – or close to wavelength
– objects, cross-sections may be larger than the geometric cross-section the
object. This is a rather strange property compared to what we usually
observe when we look at macroscopic objects in every day life5. This means
that the particle ”affects” the field lines in regions where the particle is not
located as can be seen on Fig. 3.5.

Figure 3.5: Illustration of total field around a nanoparticle under plane wave
illumination. In this figure, the plane wave is incoming from the left-hand
side. We see from that the field lines bend around the nanoparticle, which
indicates that the particle has a scattering cross-section that is larger that
its geometric cross-section.

For this reason – and in order to avoid carrying very small quantities –
we often normalize the cross-sections by the geometric cross-section. For a
spherical particle, this quantity is πa2, where a is the radius of the particle6.
So normalizing eq. 3.16 by πa2 gives us the optical theorem in terms of
efficiency

Qext = Qscatt +Qabs (3.17)

3.1.4 Dipoles and multipoles

In the context of light scattered by nanoparticles, a dipole is simply a particle
that may be ”seen” as a dipole. In physics, an electric dipole is a distribution
of at least two different charges that generates an electric dipolar moment. A

5If we were to stand straight in front of a wall, with a plane wave – or normally incident
sunlight – shone at us, the area of shadow we would cast would be exactly equal the area
of contained within our silhouette.

6Some authors like to normalize by a2 instead of πa2. This effectively increases the
efficiency, but we should keep in mind, that the cross-sections of the particle are identical.
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magnetic dipole is a distribution of at least one current loop that produces
a magnetic dipolar moment. These dipolar moments produce in turn a
distribution of field lines. An example of a dipole produced by a nanoparticle
is represented on Fig. 3.6, along with the associated dipole moment p.

Figure 3.6: Illustration of the electric (or magnetic) field lines generated by
and electric (or magnetic) dipole of dipole moment p.

The field lines emerge in the direction of the dipole moment and curve
back at the back-end of the dipole moment vector. The field lines are electric
or magnetic field lines and not Poynting vector field lines, contrary to those
shown in Fig. 3.5. So the power radiated by this dipole – given by the
Poynting field lines – is actually orthogonal to the field lines represented
here and to the dipole moment.

The dipole may be an electric dipole if the dipole moment is responsive
to an electric field and generates electric fields. It may also be a magnetic
dipole if the dipole moment is responsive to a magnetic field and is responsive
to magnetic fields. We usually distinguish between the two kinds of dipoles
by including a subscript e or m depending on whether it is an electric or
magnetic dipole moment

pe = ε0αeEin (3.18)

pm = ε0αmHin (3.19)

These two equations express the electric and magnetic dipole moments pro-
duced by an incoming electric field. The proportionality constant is called
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the polarizability7.

Multipoles are the moments that are generated when more than two
poles exist. Figure 3.7 is a chart that represents dipoles, quadrupoles and
octupoles of electric and magnetic nature along with the associated radiation
diagram. Electric (magnetic) dipoles are produced by two charges (one
current loop), quadrupoles by four charges (four current loops) and octupoles
by eight charges (eight current loops).

Figure 3.7: Illustration of the electric and magnetic multipoles up to the
octupole, along with the associated radiation diagrams. This figure is ada-
pated from Papasimakis et al. [5].

In strict analogy to atomic systems studied in quantum chemistry, the
electric field of the multipoles – when considering a spherical system – can
be decomposed on the set of spherical harmonics Y m

l . The l-number is the
azimuthal quantum number in quantum chemistry and is the number that
lists the multipoles:

7Here we have made the assumption that the polarizability is a scalar quantity. This
means that the incoming electric (magnetic) field and the induced electric (magnetic)
dipole moment are colinear. But without loss of generality, the dipolar moments and
fields are not necessarily colinear. For instance, the x-component of the electric dipole
moment may be expressed as a linear combination of all components of the electric field.
So, in general, the concept of polarizability is expressed in a 3× 3 tensor.
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• l = 0, monopole

• l = 1, dipole

• l = 2, quadrupole

• l = 3, hexapole

• l = 4, octupole

3.1.5 Resonator

It is important to realize that nanoparticles that scatter or absorb light may
be considered as resonators. Indeed, the scattering process is actually a
process by which the incoming light excites the nanoparticle and produces
a response that is driven at the excitation frequency and is sustained over
a characteristic lifetime τ , which we may refer to as the nanoparticle-cavity
lifetime. The light eventually exists the particle during this lifetime and
is scattered. The absorption may occur, because some energy is dissipated
in the material composing the nanoparticle. So, if one were to represent
the response of the particle – say the electric field inside the particle – as
a function of time when excited by a very short pulse of light, one would
observe something similar to what is represented on Fig. 3.8. By very short
pulse, we mean a pulse with a duration that is very small compared to the
oscillation period of the response.

This situation is very similar to that of classical resonators we may ex-
perience in everyday life, such as a tuning fork. The equivalent experiment
would consist in hitting the tuning fork very abruptly on a table – equivalent
to the excitation pulse – and letting it ring. The ringing sound would have
a characteristic period – or equivalently a frequency equal to the inverse of
the period –, which defines the note of the fork and a typical decay time,
which defines the time over which the note may be heard. If we were to
hold a microphone near a tuning fork after hitting it in such a manner, the
recorded signal as a function of time would show a function that is very
similar to the field represented on Fig. 3.8.

We see in Fig.3.8 that the response function is the product of an si-
nusoidal wave and a time-decaying function, so it may be written in the
following form8

R(t) ∝ cos (ω0t)× e−t/τ (3.21)

The oscillation frequency ω0 is the central cavity frequency of the resonator
and corresponds to the wave that best resonates with the particle. That

8Or else, as stated before, we like to use the complex notation:

R(t) ∝ eiω0t × e−t/τ (3.20)
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Figure 3.8: Illustration of the elecric field inside a nanoparticle under exci-
tation by a very short pulse.

being said, since the response is actually decaying in time, it carries a fi-
nite amount of energy, contrary to a perfectly sinusoidal wave which would
oscillate forever. This fact also implies that the response cannot fully be
described as we just did in eq. 3.21. Indeed, it is only an approximation.
This wave packet could only be correctly described mathematically as a con-
tinuous superposition of waves. Practically speaking, this means that the
signal actually contains a distribution of waves with frequencies very close
to ω0. The ”ω0” wave is the one that carries the most energy and the far-
ther the waves are from this central frequency, the less energy they carry.
This is the reason, we like to use the Fourier transform to describe such
responses9. The process of Fourier transforming consists in summing all the
components in time and projecting them on a frequency basis, so as to see
how the response is distributed in frequency.

For the response function considered here, we would find that the magni-
tude square of the Fourier transform has a Lorentzian shape centered around
the frequency ω0 (see Fig. 3.9). To a physicist, this is expected from a res-
onator. The physicist is interested in two quantities when he/she looks at
this distribution. The first is the frequency at which this lorentzian shape
peaks, which gives the resonance frequency ω0. The second quantity is the
linewidth ∆ω, which is basically the width of the shape and is proportional

9We recall that the Fourier transform of the response function would be

R̃(ω) =

ˆ
R(t)e−iωtdt (3.22)
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to the inverse of the decay time τ10.

Figure 3.9: Graph showing a typical Lorentzian frequency distribution of
spectral energy density that is proportional to the magnitude square of the
Fourier transform of the response function of a resonator.

The linewidth of the resonance is a very important quantity because it
is closely related to the losses of the cavity, namely to the amount of energy
lost to scattering and ohmic dissipation.

3.2 Historical Intermezzo

Studying light scattering actually starts with trying to understand why the
sky is blue. Hasan Ibn al-Haytham also known as Alhazen was a medieval
arab scientist, sometimes thought of as the first scientist, because he was
a mathematician as well as a strong promoter of empiricism to understand
natural phenomena. He is notably famous for his work in optics. He is
believed to have come up with a theory of why the sky is blue:

The sky is blue because something in the air is blue in color.
Sunlight travels through more air at sunset, so light is weakened
by its long travel and therefore appears red.

Hasan Ibn al-Haytham, ca 1000

Of course, it is easy for the modern scientist to smile at this sentence and see
that it is wrong, since Alhazen believes the sky is blue because it is somehow
composed of a substance that is blue in color. However, he already suggests

10The decay time and linewidth are mathematically related through the Fourier trans-
form and this provides us with the time-bandwidth product τ ×∆ω ∼ 1
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Figure 3.10: Alhazen is shown on the left-hand side of this figure. Leonardo
Da Vinci is on the right-hand-side. The central panel wshow a picture of the
sky at sunset where colors ranging from red to dark blue can be observed
due to scattering of light in the atmosphere.

that the reason why the sky appears redder at sunset is because light travels
a longer path. We now know that the path light travels does indeed play
an important role in explaining the red color at sunset. So we at least have
part of the story already around the eleventh century.

Later, Leonardo Da Vinci realized something quite interesting: smoke
on which light rays fall will make a black piece of velvet, on which the rays
do not fall, appear blue. This is already a scattering experiment and this
leads Da Vinci to hypothesize that the atmosphere is composed of particles
of moisture that produce the blue color.

”I say that the blueness we see in the atmosphere is not intrinsic
color, but is caused by the warm vapor evaporated in minute
and insensible atoms on which the solar rays fall, rendering them
luminous against the infinite darkness of the fiery sphere which
lies beyond and includes it... If you produce a small quantity of
smoke from dry wood and the rays of the sun fall on this smoke
and if you place (behind it) a piece of black velvet on which the
sun does not fall, you will see that the black stuff will appear of
beautiful blue color... Water violently ejected in a fine spray and
in a dark chamber where the sunbeams are admitted produces
then blue rays... Hence it follows, as I say, that the atmosphere
assumes this azure hue by reason of the particles of moisture
which catch the rays of the sun.”

Leonardo Da Vinci, ca 1500

In the second half of the nineteenth century, an Irish scientist called John
Tyndall discovered what is now known as the Tyndall effect. He realized that
the light passing through a transparent substance such as water becomes
rather turbid when colloids are added to it and scatters light sufficiently
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that the beams of light can be seen when looking away from the direction
of the source.

”The blue color of the sky, and the polarization of skylight...
constitute, in the opinion of our most eminent authorities, the
two great standing enigmas of meteorology. Indeed it was the
interest manifested in them by Sir John Herschel, in a letter of
singular speculative power, that caused me to enter upon the
consideration of theses questions so soon.”

John Tyndall, 1869

As a matter of fact, we learn with Tyndall that small particles scatter blue
light and that the light is scattered at right angles with respect to the inci-
dent beam and is linearly polarized. The scattered intensity only depends
on the particles being small enough. Towards the second half of the nine-

Figure 3.11: The left-hand side picture is a photograph of John Tyndall.
On the right-hand side are two beakers: one without any colloids on the left
and one with colloids suspended on the right. A light source is placed on
the left of the two beakers. We see that light passes through the first beaker
without any scattering, while the beam of light leaves a trace in the second
beaker due to scattering.

teenth century, Lord Rayleigh explains why light from the sky is blue and
why light. His reasoning is surprisingly simple and almost entirely based
on dimensional analysis, which is quite beautiful when you come to think
of it. Basically considering the scattering problem illustrated on Fig. 3.12.
Rayleigh makes the simple hypothesis that the scattered intensity should be
proportional to the incoming intensity I0 and that the proportionality con-
stant is a function f of a number of paramaters to be listed. We know from
Tyndall that it should depend on the size of the particle, so it is reasonable
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to say that f should be a function of the volume V of the particle. Further-
more, it should of course depend on the distance r at which the scattered
intensity is observed since se expect the intensity to decrease with distance.
Then it should depend on wavelength because we know – again from Tyndall
– that blue seems to scatter more. Finally, f should also be a function of
the index of refraction of the particle n1 and of the environment in which
the particle is located – the atmosphere – n2:

I = f(V, r, λ, n1, n2)I0 (3.23)

We already know since Maxwell that the intensity of light is proportional to
magnitude square of the dipole moment, which itself is proportional to the
volume of matter producing the dipole. So the scattered intensity should
be proportional to V 2. Since light is scattered at 90°, this means that
all scattered rays are contained in a disk perpendicular to the incoming
direction. Because energy has to be conserved, this means that the larger
the disk considered, the smaller the intensity should be in a given direction.
The energy fall should be proportional to the disk area and as a result I is
proportional to 1/r2. So we get that I should be proportional to V 2/r2 which
is has dimensions of length to the power four. But the term in front of I0

should be dimensionless, so we are to conclude that the final proprtionality
term concerning the wavelength must be 1/λ4. In the end, we have

I = g(n1, n2)

(
V 2

r2λ4

)
I0 (3.24)

Figure 3.12: A photograph of Lord Rayleigh (left-hand side). The right-
hand side is a representation of the scattering problem. The solar radiation
is impinging along the Z-axis. The disk represented in the XY-plane is the
direction of scattering of light.
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where, a function g is left to account for the complicated dependence of
scattering with the refractive indices. So by the simple reasoning, Rayleigh
demonstrates that the scattered intensity must be proportional to the inverse
fourth power of wavelength, which explains why blue scatters more than
any other wavelength and why red may be observed at sunset: light travels
through more atmosphere as already noticed by Alhazen. The important
result is of course that smaller wavelengths are more scattered.

Figure 3.13: Images of the main people involved in the developement of Mie
theory. The second picture from the left is a photograph of a vask containing
a suspension of gold nanocolloids which scatter this ruby color.

At the turn of the twentieth century, people were trying to move towards
larger and larger scatterers, which eventually led to the developpement of
what we now call Mie theory. But prior to that we have to mention Michael
Faraday’s work because the first physicists to have ventured into the devel-
opement of a theory were actually trying to explain his observations. In
1857, the british chemist, who had already established himself as a well-
known empirist created gold colloidal suspensions by accident and realized
that they had a a vivid ruby color. He even realized that for this color to
appear, these colloids needed to be small enough or else the color disap-
peared11.

Ludvig Lorenz in the 1890s actually developed a prototype of what we
may call Mie theory today, however he wrote in Danish and used his own ver-
sion of electromagnetism that overlooked and even ignored Maxwell’s work,
so he ended up being overlooked himself. In 1908, Peter Debye defended
his thesis in which he was trying to understand the pressure light exerts
on a spherical particle. This problem is very much linked to the problem
of scattering by a particle and his theory was mathematically predictive.
Finally, later that same year, Gustav Mie got interested in trying to explain
Faraday’s color in suspensions of gold colloids. So he developped a thoery to
explain the scattering of these peculiar particles and came up with a scaling
theory of light scattered by a sphere of arbitrary size and arbitrary refractive

11Those who are familiar with the concept might recognize here that Faraday had actu-
ally fabricated the first plasmonic nanoparticles. We might say that this was the beginning
of plasmonics.
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index. This theory is what we now call Mie theory, in spite of the fact, he
was not the first to have provided one.

3.3 Mie Theory

Two very good books exist on the topic of light scattering by particles that
researches and professors like to refer to. The first one is by far the most-
read book on the subject and is the book by Craig F. Bohren and Donald
R. Huffman[4]. The second book is the one written by Milton Kerker[6].

3.3.1 Multipolar coefficients

In section 3.1.4, we defined what multipoles were. Mie theory provides us
with the mathematical means to compute the so-called multipolar coeffi-
cients of a spherical particle with an arbitrary refractive index immersed in
a matrix with an equally arbitrary index. These coeffcients are proportional
to the polarizability of the multipoles and are what enable one to calculate
the scattering properties of a particle including the scattering, absorption
and extinction cross-sections. They are indexes by n which is the pole order
and are labeled an (bn) for electric-type (magnetic-type) poles. By electric-
type, we mean that the fields scattered by the particle will be those of a
corresponding electric multipole

an =
mψn(mx)ψ′n(x)− µψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− µξn(x)ψ′n(mx)
(3.25)

bn =
µψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

µψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
(3.26)

In these two equations, the Mie coefficients are expressed as functions of
ψn, ψ′n (the derivative of ψn) ξn and ξ′n (the derivative of ξn). ψn and
ξn are respectively the nth order Ricatti-Bessel and Hankel functions. The
important thing to notice in these complicated formulas is that they can be
functions of the argument x or of the product m × x, which are the two
important parameters to define. The quantity m also appears elsewhere as
a prefactor of the functions as well as µ. µ is the magnetic permeability
and we can straight away set this number to one, which characterises the
absence of a magnetic response in matter. Since most materials at optical
frequencies actually exhibit no magnectic behavior, we may rewrite the two
previous equations without µ. So in the end x and m are the only two
parameters that govern the Mie coefficients.

The first parameter x is dimensionless : x = nhka, where nh is the
refractive index of the host material, k is the wavevector of light in free-space
and a is the radius of the particle. Therefore, this quantity is a normalized
number that is proportional to the size-to-wavelength ratio. The scalability
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of Mie theory comes from the fact that this parameter is dimensionless. This
means that we may consider a very large or else very small object and the
predictions will be the same as long as the wavelength is scalled accordingly.
We may refer to x as the reduced frequency or else frequency for simplicity.

The second parameter m is simply the refractive index contrast between
the particle and the host material m = n/nh. It is instructive to understand
how an and bn depend on these two parameters. For this reason we look at
|a1| for two values of m just to get and intuition as well as compare |a1| (in
blue on 3.14) to |a2| (in red on Fig. 3.14). We learn empirically here that

Increasing the refractive index contrast (m) narrows the distribu-
tion of polarizability and increases the resonance wavelength (i.e.
decreases the resonance frequency). We also learn that higher
order (n) multipoles appear at smaller wavelengths (higher fre-
quencies) compared to lower order multipoles.

Figure 3.14: The top sketch is an illustration of a nanoparticle of refractive
index n immersed in a host medium of refractive index nh. The bottom-left
graph plots |a1| and |a2| as a function of x for m = 2. The bottom-right
graph |a1| for m = 3.

3.3.2 Cross-section efficiencies

Next, the scattering and extinction cros-section efficiencies Qscatt and Qext

can be calculated directly from these coefficients using the following expres-
sions

Qscatt =
2

x2

∞∑
n=1

(2n+ 1)
[
|an|2 + |bn|2

]
(3.27)

Qext =
2

x2

∞∑
n=1

(2n+ 1)<[an + bn] (3.28)
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From this last equation, we see that the basic properties of the Mie coeffi-
cients will be transferred to the cross-section efficiencies and we may provide
the general rule of thumb

A good scatter is a particle made of a material with a large
refractive index.

This property directly comes from the fact that a large refractive index,
produces a narrower value resonance as noticed in Fig. 3.14. This in turn
means that the resonator is of better quality (with a larger quality factor)
as it is capable of storing energy over a longer period as we saw in section
3.1.5.

The optical theorem enables one to compute the absorption cross-section
efficiency directly from the knowledge of the scattering and extinction cross-
section efficiencies

Qabs = Qext −Qscatt (3.29)

3.4 Particles small compared with the wavelength

The previous section is a complete theory of the scattering, absorption and
extinction of spherical particles, however big they are. We can make math-
ematical expansions of eqs. 3.25 and 3.26 for instance in cases when the
particles are small compared to wavelength, which considerably simplify the
mathematical expressions and provide much better physical insight into the
optical behavior of nanoparticles.

Considering particles that are small compared to wavelength translates
mathematically into the fact that the reduced frequency parameter x is very
small compared to 1 (x � 1). If this holds we are justified in making the
following expansions up to order x5

a1 ≈ − i2x
3

3

m2 − 1

m2 + 1
− i2x5

5

(m2 − 2)(m2 − 1)

(m2 + 2)2
(3.30)

b1 ≈ − ix
5

45
(m2 − 1) (3.31)

If x� 1, then we can even push our luck further and be justified in retaining
only the firs term (the one proportional to x3) in the expression of a1 and
since the scattering efficiency will be proportional to the magnitude squared
of that quantity (see eq. 3.27), such that we have

Qscatt =
8x4

3

∣∣∣∣m2 − 1

m2 + 1

∣∣∣∣2 (3.32)

So scattering is proportional to x4 and since x = 2π
λ nha, where a is the

size of the radius of the particle, nh is the host refractive index and λ is
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wavelength, we find the following important dependence

σscatt ∝
a6

λ4
∝ V 2

λ4
(3.33)

which is the exact proportionality relation found by Lord Rayleigh (see eq.
3.24).

This approximation is sometimes referred to as the electrostatic approx-
imation since it essentially implies that the electromagnetic field is constant
over the typical size of the nanoparticle. The absorption efficiency may be
approximated by the following formula12

Qabs = 4xIm

(
ε− εh
ε+ 2εh

)
(3.34)

where εh is the dielectric constant of the host medium and ε is that of the
particle.

Exercise

1. Following eqs. 3.32 and 3.34, give the dependence of scattering and
absorption with respect to the nanoparticle size a in the electrostatic
approximation. In the limiting cases, what regimes dominate? Sketch
a log-plot of the dependence of absorption and scattering with particle
size.

2. Considering a constant positive value of εh and using a Drude model
without collisions (Γ = 0) for ε (dielectric constant of a metal), derive
the typical behavior of the absorption efficiency. Determine the fre-
quency ωsp at which the idealized localized surface plasmon resonance
occurs.

3. Same question when the collision frequency Γ is considered.

4. Sketch the two situations on a graph.

3.5 Thermal radiation

For temperatures T 6= 0 K, the solid state can emit light, as well as absorb
and scatter light. The emission process resorts to the concept of blackbody
radiation. A blackbody is an idealized opaque and non-reflective body that
emits light. The emission properties depend on the temperature of the
blackbody.

Consider a region of space enclosed by a surface. the dimensions of this
regions of space should be large compared to wavelength but it’s shape can

12This actually follows from the same expansions.
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be completely arbitrary and made of virtually any material, it does not
matter. All that matters really is that a definite equilibrium temperature T
can be assigned to that region of space. The equilibrium radiation field that
will emanate from that region of space will be isotropic, homogenous and
unpolarized. At any point, the power radiated per unit frequency interval
and per unit solid angle in any direction, which crosses a unit area normal
to this direction is given by the Planck function13

Ie(ω, T ) =
~ω3

4π3c2

1

exp
( ~ω
kT

)
− 1

(3.35)

where k is Boltzmann’s constant. So this function has units of W/m2/sr.
Figure 3.15 shows the different spectral regions where a blackbody emits as a
function of its temperature. Of course, the blackbody radiation distribution

Figure 3.15: Graph of the Planck Blackbody ditribution as a function
of wavelength for different temperatues of the Blackbody. Adapted from
Wikipedia.

function is idealized for a blackbody.
Let us consider a spherical particle of radius a made of any material

and let us place it in the region of space we have been considering. If the
spherical particle is in equilibrium with that region of space, the distribu-
tion of radiation is unchanged in principle and should follow Planck’s law.
Considering a spherical surface of radius R � a, such that every infinites-
imal portion of surface dS at its surface is the source of a near plane-wave
illuminating the particle with an irradiance Ie × dΩ (see Fig. 3.16), where

13Also referred to as the blackbody radiation distribution function.
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dΩ is the unit solide angle (dS/R2). As a result the total power absorbed
per unit time by the particle is simply

ˆ +∞

0

ˆ
Ω
σabsIedΩdω = 4π

ˆ +∞

0
σabsIedω (3.36)

Figure 3.16: A region of space at temperature T containing a spherical
particle, and a radiation field in thermodynamic equilibrium. Sketch was
taken from [4].

where σabs is the absorption scattering cross-section of the particle. In
equilibrium the total power emitted by the particle should equal that ab-
sorbed b it, such that

ˆ +∞

0
Wedω = 4π

ˆ +∞

0
σabsIedω (3.37)

where We is the power per unit frequency which, for symmetry reasons, is
emitted uniformely in all directions. If we define emissivity E in the following
fashion (i.e. the ratio of the power emitted by the particle to the power
emitted by a particle that emits according to the blackbody distribution
function)

E =
We

4π2a2Ie
(3.38)



3.5. THERMAL RADIATION 57

then, we can deduce from eq.3.37

ˆ +∞

0
(Qabs − E)Iedω = 0 (3.39)

And a suffciant condition for this to be valid is

Qabs = E (3.40)

This last equation is also known as Kirshoff’s law of thermal radiation which,
in simple terms states that absorption is equal to emission for a body in
thermal equilibrium.

As should be clear by now, the absorption efficiency of a subwavelength
particle can be larger than 1. So following eq. 3.40, this means that the
emissivity of the body is actually larger than 1. On that matter, we shall
cite Bohren and Huffman [4], who say

We shall occasionally encounter spherical particles with absorp-
tion efficiencies greater than 1, sometimes much greater [...]. But
if Qabs can be greater than 1, the emissivity can be greater than
1, which treads heavily on deep-seated prejudices about the up-
per limit a proper emissivity can assume; at first glance; an
emissivity greater than 1 implies that the particle emits more
than a perfectly black particle. But what is a perfectly black
particle? The standard definition of a perfect blackbody is that
it absorbs all the light that is incident on it. The key phrase is
italicized the notion of light geometrically incident on a body is a
concept from geometrical optics, which fails to be valid for parti-
cles with dimensions comparable to or less than the wavelength.
This was recognized by Planck (1913), who stated that ”through-
out the following discussion it will be assumed that the ... radii
of curvature of all surfaces under consideration are large com-
pared with the wavelengths of the rays considered.” According
to Baltes (1976), Kirchhoff was also well aware of the restrictions
on his derivations. Unfortunately, as so often happens in physics,
each successive author in a chain extending from the sources of
a theory tends to omit more of the fine print underlying its va-
lidity. When a ”paradox” is inevitably uncovered, brickbats are
unfairly hurled at the theory when their proper target is those
who uncritically use it in a state of blissful ignorance about its
limitations.
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Appendix

Complex Numbers

Cartesian/polar form

For the entire appendix, we shall consider a complex number z of the form

z = z′ + iz′′ (3.41)

z = |z|eiθ = |z| (cos θ + i sin θ) (3.42)

where the first line is the cartesian form and the second line is called the
polar form

• z ∈ C

• z′ ∈ R is the real part of z

• z′′ ∈ R is the imaginary part of z

• |z| is the modulus of z and is equal to

|z| =
√
z′2 + z′′2

• θ is the angle or the argument of z and is such that

tan θ =
z′′

z′

Complex conjugate

The complex conjugate of z is simply

z∗ = z′ − iz′′ (3.43)

and has the following properties

z + z∗ = 2z′ (3.44)

z − z∗ = 2iz′′ (3.45)

|z|2 = zz∗ (3.46)

(3.47)

59
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Modulus properties

|z1z2| = |z1||z2| (3.48)

z2 6= 0,

∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

(3.49)

|z1 + z2| ≤ |z1|+ |z2| (3.50)

Moivre formula

(cos θ + i sin θ) = cos(nθ) + i sin(nθ) (3.51)

where θ ∈ R and n ∈ Z

Euler formula

cosx =
eix + e−ix

2
(3.52)

sinx =
eix − e−ix

2i
(3.53)

where x ∈ R

Differential Calculus

Taylor expansion

Let f : x 7→ f(x), then

f(x+ ε) = f(x) + εf ′(x) +
ε2

2
f ′′(x) + ... (3.54)

=
+∞∑
n=0

εn

n!
f (n)(x) (3.55)

Differential of a function of several variables

Let f : (x, y, z) 7→ f(x, y, z), then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz (3.56)

Vectorial operators

∇ operator

∇ =

 ∂
∂x
∂
∂y
∂
∂z

 (3.57)
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Gradient

∇f =


∂f
∂x
∂f
∂y
∂f
∂z

 (3.58)

Divergence

Let A : (x, y, z) 7→ A(x, y, z) =

Ax(x, y, z)
Ay(x, y, z)
Az(x, y, z)

 be a vectorial function, then

∇.A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(3.59)

Curl

∇×A =


∂Az
∂y −

∂Ay
∂z

∂Ax
∂z −

∂Az
∂x

∂Ay
∂x −

∂Ax
∂y

 (3.60)

Laplacian

For a vectorial function

∆A = ∇ (∇.A)−∇× (∇×A) (3.61)

For a scalar function

∆f = ∇2f (3.62)

Fourier Transforms

Definition

Let f : t 7→ f(t) be a function R→ R. Then the Fourier transform of f is a
function f̃(ω) of R→ C defined by14

f̃(ω) =

ˆ +∞

−∞
f(x)e−iωtdt (3.63)

The inverse Fourier transform is defined by

f(t) =
1

2π

ˆ +∞

−∞
f̃(ω)eiωtdω (3.64)

14We are defining the Fourier transform in terms of a scalar function, but all the defi-
nitions here extend very naturally to vector functions and we just need to replace every
scalar function by a vector function to extend the definitions.
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Parseval-Plancherel theoremˆ +∞

−∞
|f(t)|2 dt =

1

2π

ˆ +∞

−∞

∣∣∣f̃(ω)
∣∣∣2 dω (3.65)

Convolution theorem

f̃ ∗ g̃ = f̃ × g (3.66)

where the convolution product is defined by

(f ∗ g)(t) =

ˆ +∞

−∞
f(t− t′)g(t′)dt′ (3.67)

Solide angle

An infintesimal solid angle dΩ is defined as the ratio of an infinitesimal unit
surface dS by the square of the distance r to that surface. The direction of
S is normal to the surface and we have

dΩ =
dS

r2
(3.68)

In spherical coordinates, we find

dΩ = sin θdθdφ (3.69)

Over an entire (spherical) space R3, the total solid angle is

Figure 3.17: Illustration of the solid angle in spherical coordinates.
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ΩR3 =

ˆ π

θ=0

ˆ 2π

φ=0
sin θdθdφ = 4π (3.70)

This solid angle is also equal to the surface of any sphere of radius r, divided
by the square radius of the sphere

ΩR3 =
4πr2

r2
= 4π (3.71)
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