Philippe Jaming

Université de Bordeaux

http://www.u-bordeaux.fr/~ pjaming/enseignement/M1.html

Master Mathématiques et Applications M1 Mathématiques fondamentales & M1 Analyse, EDP, probabilités Lecture : Introduction to spectral analysis

Philippe Jaming (Université de Bordeaux)

Spectral Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every *x*, *y*

- compact operators : $T(B_H)$ is compact $(B_H \text{ unit ball of } H)$ or equivalently, for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of (Tx_n) that converges in H (stongly) or equivalently, if the sequence $(x_n)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $(Tx_n)_{n \in \mathbb{N}}$ is strongly convergent.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every *x*, *y*

- compact operators : $T(B_H)$ is compact $(B_H \text{ unit ball of } H)$ or equivalently, for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of (Tx_n) that converges in H (stongly) or equivalently, if the sequence $(x_n)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $(Tx_n)_{n \in \mathbb{N}}$ is strongly convergent.

-

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every x, y

- compact operators : $\overline{T(B_H)}$ is compact $(B_H \text{ unit ball of } H)$ or equivalently, for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of (Tx_n) that converges in H (stongly) or equivalently, if the sequence $(x_n)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $(Tx_n)_{n \in \mathbb{N}}$ is strongly convergent.

~ ~ ~

<ロ> (四) (四) (三) (三) (三) (三)

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every *x*, *y*

- compact operators : $\overline{T(B_H)}$ is compact $(B_H \text{ unit ball of } H)$ or equivalently, for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of (Tx_n) that converges in H (stongly) or equivalently, if the sequence $(x_n)_{n \in \mathbb{N}} \in H$ is weakly convergent, the $(Tx_n)_{n \in \mathbb{N}}$ is strongly convergent

<ロ> (四) (四) (三) (三) (三) (三)

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every *x*, *y*

- compact operators : $T(B_H)$ is compact $(B_H \text{ unit ball of } H)$ or equivalently, for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of (Tx_n) that converges in H (stongly)

or equivalently, if the sequence $(x_n)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $(Tx_n)_{n \in \mathbb{N}}$ is strongly convergent.

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle Tx, y \rangle = \langle x, Ty \rangle$ for every *x*, *y*

- compact operators : $\overline{T(B_H)}$ is compact $(B_H \text{ unit ball of } H)$ or equivalently, for every bounded sequence $(x_n)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of (Tx_n) that converges in H (stongly) or equivalently, if the sequence $(x_n)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $(Tx_n)_{n \in \mathbb{N}}$ is strongly convergent.

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

● ∃ a set I finite or countable

● ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

$T = \sum \lambda_i \pi_i \quad \pi_i \text{ orthogonal projection on } E_i.$

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

● ∃ a set I finite or countable

● ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

$T = \sum \lambda_i \pi_i \quad \pi_i$ orthogonal projection on E_i .

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

● ∃ a set I finite or countable

● ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

$T = \sum \lambda_i \pi_i \quad \pi_i$ orthogonal projection on E_i .

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

● ∃ a set I finite or countable

● ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

$T = \sum \lambda_i \pi_i \quad \pi_i$ orthogonal projection on E_i .

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

● ∃ a set I finite or countable

● ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

$T = \sum \lambda_i \pi_i \quad \pi_i$ orthogonal projection on E_i .

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- ∃ a set I finite or countable
- ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

 $T = \sum \lambda_i \pi_i \quad \pi_i \text{ orthogonal projection on } E_i.$

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- ∃ a set I finite or countable
- ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

s.t.

 $T = \sum \lambda_i \pi_i \quad \pi_i \text{ orthogonal projection on } E_i.$

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- ∃ a set I finite or countable
- ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

• \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;

$$T = \sum \lambda_i \pi_i \quad \pi_i \text{ orthogonal projection on } E_i.$$

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- ∃ a set I finite or countable
- ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

 ∃ a real sequence (λ_i)_{i∈I} with |λ_i| non-increasing and if I infinite, λ_i → 0;

$$T = \sum \lambda_i \pi_i \quad \pi_i$$
 orthogonal projection on E_i .

Philippe Jaming (Université de Bordeaux)

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- ∃ a set I finite or countable
- ∃ a decomposition of H into mutually orthogonal subspaces

$$H = \ker T \oplus \bigoplus_{i \in I} E_i = \ker T \oplus \operatorname{range} T$$

where each E_i has finite dimension;

- \exists a real sequence $(\lambda_i)_{i \in I}$ with $|\lambda_i|$ non-increasing and if I infinite, $\lambda_i \to 0$;
- s.t.

$$T = \sum_{i \in I} \lambda_i \pi_i \quad \pi_i \text{ orthogonal projection on } E_i.$$

Philippe Jaming (Université de Bordeaux)

Choose $(e_{k,i})_{k=1,...,n_i}$ $(n_i = \dim E_i)$ on o.n.b. of E_i ,

$$\pi_i X = \sum_{k=1}^{n_i} \langle X, e_{k,i} \rangle e_{k,i}$$

thus

$$Tx = \sum_{i \in I} \sum_{k=1}^{n_i} \lambda_i \langle x, e_{k,i} \rangle e_{k,i}.$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker Twhich requires ker T to be *separable* (thus H as well).

Choose $(e_{k,i})_{k=1,...,n_i}$ $(n_i = \dim E_i)$ on o.n.b. of E_i ,

$$\pi_i \boldsymbol{x} = \sum_{k=1}^{n_i} \langle \boldsymbol{x}, \boldsymbol{e}_{k,i} \rangle \boldsymbol{e}_{k,i}$$

thus

$$Tx = \sum_{i \in I} \sum_{k=1}^{n_i} \lambda_i \langle x, e_{k,i} \rangle e_{k,i}.$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker Twhich requires ker T to be *separable* (thus H as well).

Choose $(e_{k,i})_{k=1,...,n_i}$ $(n_i = \dim E_i)$ on o.n.b. of E_i ,

$$\pi_i x = \sum_{k=1}^{n_i} \langle x, e_{k,i} \rangle e_{k,i}$$

thus

$$Tx = \sum_{i \in I} \sum_{k=1}^{n_i} \lambda_i \langle x, e_{k,i} \rangle e_{k,i}.$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker Twhich requires ker T to be *separable* (thus H as well).

Choose $(e_{k,i})_{k=1,...,n_i}$ $(n_i = \dim E_i)$ on o.n.b. of E_i ,

$$\pi_i x = \sum_{k=1}^{n_i} \langle x, e_{k,i} \rangle e_{k,i}$$

thus

$$Tx = \sum_{i \in I} \sum_{k=1}^{n_i} \lambda_i \langle x, \boldsymbol{e}_{k,i} \rangle \boldsymbol{e}_{k,i}.$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker 7 which requires ker T to be *separable* (thus H as well).

Philippe Jaming (Université de Bordeaux)

Choose $(e_{k,i})_{k=1,\ldots,n_i}$ $(n_i = \dim E_i)$ on o.n.b. of E_i ,

$$\pi_i x = \sum_{k=1}^{n_i} \langle x, e_{k,i} \rangle e_{k,i}$$

thus

$$Tx = \sum_{i \in I} \sum_{k=1}^{n_i} \lambda_i \langle x, e_{k,i} \rangle e_{k,i}.$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker Twhich requires ker T to be *separable* (thus H as well).

$$T x = \sum_{k \in \mathbb{N}} \lambda_k \langle x, oldsymbol{e}_k
angle_k$$

To do so, rewrite the basis $\bigcup_{i \in I} (e_{k,i})_{k=1,...,n_i}$ and add a basis of ker T.

If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.

Otherwise we have to mix the 2 bases and lose the fact that $|\lambda_k|$ is non-increasing

Let us put it in practice

$$T x = \sum_{k \in \mathbb{N}} \lambda_k \langle x, oldsymbol{e}_k
angle$$

To do so, rewrite the basis $\bigcup_{i \in I} (e_{k,i})_{k=1,...,n_i}$ and add a basis of ker *T*.

If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.

Otherwise we have to mix the 2 bases and lose the fact that $|\lambda_k|$ is non-increasing

Let us put it in practice

$$\mathcal{T} \mathbf{x} = \sum_{k \in \mathbb{N}} \lambda_k \langle \mathbf{x}, \mathbf{e}_k
angle \mathbf{e}_k$$

To do so, rewrite the basis $\bigcup_{i \in I} (e_{k,i})_{k=1,...,n_i}$ and add a basis of ker *T*. If ker *T* has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end. Otherwise we have to mix the 2 bases and lose the fact that $|\lambda_k|$ is non-increasing Let us put it in practice

$$\mathcal{T} \mathbf{x} = \sum_{k \in \mathbb{N}} \lambda_k \langle \mathbf{x}, \mathbf{e}_k
angle \mathbf{e}_k$$

To do so, rewrite the basis $\bigcup_{i \in I} (e_{k,i})_{k=1,...,n_i}$ and add a basis of ker *T*.

If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.

Otherwise we have to mix the 2 bases and lose the fact that $|\lambda_k|$ is non-increasing Let us put it in practice

$$\mathcal{T} \mathbf{x} = \sum_{k \in \mathbb{N}} \lambda_k \langle \mathbf{x}, \mathbf{e}_k
angle \mathbf{e}_k$$

To do so, rewrite the basis $\bigcup_{i \in I} (e_{k,i})_{k=1,...,n_i}$ and add a basis of ker *T*.

If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.

Otherwise we have to mix the 2 bases and lose the fact that $|\lambda_k|$ is non-increasing

Let us put it in practice

$$\mathcal{T} \mathbf{x} = \sum_{k \in \mathbb{N}} \lambda_k \langle \mathbf{x}, \mathbf{e}_k
angle \mathbf{e}_k$$

To do so, rewrite the basis $\bigcup_{i \in I} (e_{k,i})_{k=1,...,n_i}$ and add a basis of ker *T*.

If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.

Otherwise we have to mix the 2 bases and lose the fact that $|\lambda_k|$ is non-increasing

Let us put it in practice

- 4 周 ト 4 戸 ト 4 戸 ト

$e_{1,1},\ldots,e_{n_1,1}$ basis of $E_1 o ilde e_1,\ldots, ilde e_{n_1}$

 $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \to \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise.

$e_{1,1},\ldots,e_{n_1,1}$ basis of $E_1 o ilde e_1,\ldots, ilde e_{n_1}$

 $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \to \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise

$e_{1,1}, \ldots, e_{n_{1},1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$ $e_{1,2}, \ldots, e_{n_{1},2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$ either it stops at some \tilde{e}_{N} (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_{1}, \ldots, f_{M})$ if $M = \dim \ker T < +\infty$ or $(f_{k})_{k \in \mathbb{N}}$ otherwise.

$e_{1,1}, \ldots, e_{n_{1},1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$ $e_{1,2}, \ldots, e_{n_{1},2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$ either it stops at some \tilde{e}_{N} (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_{1}, \ldots, f_{M})$ if $M = \dim \ker T < +\infty$ or $(f_{k})_{k \in \mathbb{N}}$ otherwise.

$e_{1,1}, \ldots, e_{n_1,1}$ basis of $E_1 \rightarrow \tilde{e}_1, \ldots, \tilde{e}_{n_1}$ $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \rightarrow \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence

take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise.

 $e_{1,1}, \ldots, e_{n_1,1}$ basis of $E_1 \to \tilde{e}_1, \ldots, \tilde{e}_{n_1}$ $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \to \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise.

 $e_{1,1}, \ldots, e_{n_1,1}$ basis of $E_1 \to \tilde{e}_1, \ldots, \tilde{e}_{n_1}$ $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \to \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise.

 $e_{1,1}, \ldots, e_{n_1,1}$ basis of $E_1 \to \tilde{e}_1, \ldots, \tilde{e}_{n_1}$ $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \to \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

 $e_{1,1}, \ldots, e_{n_1,1}$ basis of $E_1 \to \tilde{e}_1, \ldots, \tilde{e}_{n_1}$ $e_{1,2}, \ldots, e_{n_1,2}$ basis of $E_2 \to \tilde{e}_{n_1+1}, \ldots, \tilde{e}_{n_1+n_2}$ either it stops at some \tilde{e}_N (case $co - \dim \ker T < +\infty$) or gives an infinite sequence take a basis of ker $T(f_1, \ldots, f_M)$ if $M = \dim \ker T < +\infty$ or $(f_k)_{k \in \mathbb{N}}$ otherwise.

< ロ > < 同 > < 回 > < 回 >

Unite both bases

If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. T : $H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}}$ orthonormal basis of H;

 $\exists \ (\lambda_k)_{k\in\mathbb{N}} \ real, \lambda_k
ightarrow 0;$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases

If co – dim ker $T < +\infty$, $(e_k)_{k \geq 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the

corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty, (e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. T : $H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}}$ orthonormal basis of H;

 $\exists \ (\lambda_k)_{k\in\mathbb{N}} \ \textit{real}, \lambda_k o \mathsf{0}$;

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. T : $H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}}$ orthonormal basis of H ;

 $\exists \ (\lambda_k)_{k\in\mathbb{N}} \ real, \lambda_k
ightarrow 0;$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. T : $H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}}$ orthonormal basis of H ;

 $\exists \ (\lambda_k)_{k\in\mathbb{N}} \ real, \lambda_k
ightarrow 0;$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. T : $H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k\in\mathbb{N}}$ orthonormal basis of H ;

 $\exists (\lambda_k)_{k \in \mathbb{N}}$ real, $\lambda_k \to 0$;

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. T : $H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}}$ orthonormal basis of H ;

 $\exists \ (\lambda_k)_{k\in\mathbb{N}} \ real, \lambda_k \to 0;$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \to H$ compact self-adjoint operator. $\exists (e_k)_{k \in \mathbb{N}}$ orthonormal basis of *H*; $\exists (\lambda_k)_{k \in \mathbb{N}}$ real, $\lambda_k \to 0$;

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}} \text{ orthonormal basis of } H; \\ \exists (\lambda_k)_{k \in \mathbb{N}} \text{ real}, \lambda_k \to 0; \end{cases}$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}} \text{ orthonormal basis of } H; \\ \exists (\lambda_k)_{k \in \mathbb{N}} \text{ real}, \lambda_k \to 0; \end{cases}$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}} \text{ orthonormal basis of } H; \\ \exists (\lambda_k)_{k \in \mathbb{N}} \text{ real}, \lambda_k \to 0; \end{cases}$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}} \text{ orthonormal basis of } H; \\ \exists (\lambda_k)_{k \in \mathbb{N}} \text{ real}, \lambda_k \to 0; \end{cases}$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Spectral Theorem

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}} \text{ orthonormal basis of } H; \\ \exists (\lambda_k)_{k \in \mathbb{N}} \text{ real}, \lambda_k \to 0; \\ \end{cases}$

 $Tx = \sum \lambda_k \langle x, e_k \rangle e_k.$

Spectral Theorem

Unite both bases If $co - \dim \ker T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, \ldots, \tilde{e}_N, f_1, \ldots$ the corresponding eigenvalues are $\lambda_1, \ldots, \lambda_N, 0 \ldots$ are decreasing to 0 If dim ker $T < +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow f_1, \ldots, f_M, \tilde{e}_1, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_1, \ldots$ are not decreasing but go to 0 If dim ker $T = co - \dim \ker T = +\infty$, $(e_k)_{k \ge 1}$ is $\rightarrow \tilde{e}_1, f_1, \tilde{e}_2, f_2, \ldots$ the corresponding eigenvalues are $\lambda_1, 0, \lambda_2, 0, \ldots$ are not decreasing but go to 0.

Theorem (Spectral Theorem revisited)

H separable, infinite dimnesional, Hilbert space. $T : H \rightarrow H$ compact self-adjoint operator.

 $\exists (e_k)_{k \in \mathbb{N}} \text{ orthonormal basis of } H; \\ \exists (\lambda_k)_{k \in \mathbb{N}} \text{ real}, \lambda_k \to 0; \end{cases}$

$$T\mathbf{x} = \sum_{k \in \mathbb{N}} \lambda_k \langle \mathbf{x}, \mathbf{e}_k \rangle \mathbf{e}_k.$$

Philippe Jaming (Université de Bordeaux)

Spectral Theorem

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A = A^* \Rightarrow \exists U$ unitary $(U^{-1} = U^*) \exists D$ real diagonal $A = UDU^*$.

(人間) シスヨン イヨン

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A = A^* \Rightarrow \exists U$ unitary $(U^{-1} = U^*) \exists D$ real diagonal $A = UDU^*$.

Philippe Jaming (Université de Bordeaux)

(人間) シスヨン イヨン

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A = A^* \Rightarrow \exists U$ unitary $(U^{-1} = U^*) \exists D$ real diagonal $A = UDU^*$.

< 回 > < 回 > < 回 >

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A = A^* \Rightarrow \exists U$ unitary $(U^{-1} = U^*) \exists D$ real diagonal $A = UDU^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A = A^* \Rightarrow \exists U$ unitary $(U^{-1} = U^*) \exists D$ real diagonal $A = UDU^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト

one car	n also ir	terpret	this as	T having	a matr	ix of th	e form		
	ker T	<i>E</i> 1		E ₂		•••			
		$e_{1,1}, \ldots, e_{n_1,1}$		$e_{1,2}, \ldots, e_{n_2,2}$					
ker T	0	(()		••		
<i>e</i> _{1,1}		λ_1	0						
÷	0	•.	·.				0		
<i>e</i> _{n1,1}		0	λ_1						
<i>e</i> _{1,2}				λ_2	0				
:	0			-	·.				
<i>e</i> _{n₂,2}				0	λ_2				
						·	0		
	0	()				·		
						0	·		
nilippe Jaming	(Université	de Bordeaux)		Spectral Theorem					

Philippe Jaming (Université de Bordeaux)

Spectral Theorem

Master Math & Applications 9/9

That's all !

Thank you for your attention !

Next video : an example.

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.htm]

Philippe Jaming (Université de Bordeaux)

Spectral Theorem

Master Math & Applications 10/9

<ロ> <同> <同> < 同> < 同> < 同>

Thank you for your attention !

Next video : an example.

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.html

Philippe Jaming (Université de Bordeaux)

Spectral Theorem

Master Math & Applications 10/9

< ロ > < 同 > < 回 > < 回 >