Spectral Theorem for compact self-adjoint operators

Philippe Jaming

Université de Bordeaux

```
http://www.u-bordeaux.fr/~ pjaming/enseignement/M1.html
```

Master Mathématiques et Applications
M1 Mathématiques fondamentales \& M1 Analyse, EDP, probabilités
Lecture : Introduction to spectral analysis

Preliminary warning

This video is a complement to the lecture notes available at
http://www.u-bordeaux.fr/~pjaming/enseignement/M1.htm
I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces: $\langle T x, y\rangle=\langle x, T y\rangle$ for every
x, y
- compact operators : $\overline{T\left(B_{H}\right)}$ is compact (B_{H} unit ball of H)
or equivalently, for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of ($T x_{n}$) that converges in H (stongly) or equivalently, if the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent.

Preliminary warning

This video is a complement to the lecture notes available at

```
http://www.u-bordeaux.fr/~ pjaming/enseignement/M1.htm]
```

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces: $\langle T x, y\rangle=\langle x, T y\rangle$ for every
x, y
- compact operators : $\bar{T}\left(B_{H}\right)$ is compact (B_{H} unit ball of H)
or equivalently, for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$, there exists
a subsequence of ($T x_{n}$) that converges in H (stongly)
or equivalently, if the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent.

Preliminary warning

This video is a complement to the lecture notes available at

```
http://www.u-bordeaux.fr/~ pjaming/enseignement/M1.htm
```

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle T x, y\rangle=\langle x, T y\rangle$ for every x, y
- compact operators : $\overline{T\left(B_{H}\right)}$ is compact (B_{H} unit ball of H)
or equivalently, for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$, there exists
a subsequence of ($T x_{n}$) that converges in H (stongly)
or equivalently, if the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent.

Preliminary warning

This video is a complement to the lecture notes available at

```
http://www.u-bordeaux.fr/~ pjaming/enseignement/M1.htm]
```

I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle T x, y\rangle=\langle x, T y\rangle$ for every x, y
- compact operators : $\overline{T\left(B_{H}\right)}$ is compact (B_{H} unit ball of H)

Preliminary warning

This video is a complement to the lecture notes available at
http://www.u-bordeaux.fr/~pjaming/enseignement/M1.htm
I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle T x, y\rangle=\langle x, T y\rangle$ for every x, y
- compact operators : $\overline{T\left(B_{H}\right)}$ is compact (B_{H} unit ball of H) or equivalently, for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of ($T x_{n}$) that converges in H (stongly)
or equivalently, if the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent.

Preliminary warning

This video is a complement to the lecture notes available at
http://www.u-bordeaux.fr/~pjaming/enseignement/M1.htm
I also assume that you have followed previous courses in which the following notions were presented

- Self-adjoint operators on Hilbert spaces : $\langle T x, y\rangle=\langle x, T y\rangle$ for every
x, y
- compact operators : $\overline{T\left(B_{H}\right)}$ is compact (B_{H} unit ball of H)
or equivalently, for every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset H$, there exists a subsequence of ($T x_{n}$) that converges in H (stongly) or equivalently, if the sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in H$ is weakly convergent, then $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is strongly convergent.

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- ヨ a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in l} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in l} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in l} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in l} E_{i}=\operatorname{ker} T \oplus \text { range } T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in l} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in 1}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

π_{i} orthogonal projection on E_{i}.

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in I} E_{i}=\operatorname{ker} T \oplus \text { range } T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

π_{i} orthogonal projection on E_{i}.

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in I} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

π_{i} orthogonal projection on E_{i}.

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator H \rightarrow H compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in I} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

π_{i} orthogonal projection on E_{i}.

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)
H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in I} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite,

Spectral Theorem for compact self-adjoint operators

Theorem (Spectral Theorem)

H Hilbert space. T opérator $H \rightarrow H$ compact, self-adjoint. Then

- \exists a set I finite or countable
- \exists a decomposition of H into mutually orthogonal subspaces

$$
H=\operatorname{ker} T \oplus \bigoplus_{i \in I} E_{i}=\operatorname{ker} T \oplus \operatorname{range} T
$$

where each E_{i} has finite dimension;

- \exists a real sequence $\left(\lambda_{i}\right)_{i \in I}$ with $\left|\lambda_{i}\right|$ non-increasing and if I infinite, $\lambda_{i} \rightarrow 0$;
s.t.

$$
T=\sum_{i \in I} \lambda_{i} \pi_{i} \quad \pi_{i} \text { orthogonal projection on } E_{i} .
$$

Spectral theorem - comments

Choose $\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}\left(n_{i}=\operatorname{dim} E_{i}\right)$ on o.n.b. of E_{i},

thus

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker \top which requires ker T to be separable (thus H as well).

Spectral theorem - comments

Choose $\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}\left(n_{i}=\operatorname{dim} E_{i}\right)$ on o.n.b. of E_{i},

$$
\pi_{i} x=\sum_{k=1}^{n_{i}}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

thus

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker \top which requires ker T to be separable (thus H as well).

Spectral theorem - comments

Choose $\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}\left(n_{i}=\operatorname{dim} E_{i}\right)$ on o.n.b. of E_{i},

$$
\pi_{i} x=\sum_{k=1}^{n_{i}}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

thus

$$
T x=\sum_{i \in I} \sum_{k=1}^{n_{i}} \lambda_{i}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker T which requires ker T to be separable (thus H as well).

Spectral theorem - comments

Choose $\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}\left(n_{i}=\operatorname{dim} E_{i}\right)$ on o.n.b. of E_{i},

$$
\pi_{i} x=\sum_{k=1}^{n_{i}}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

thus

$$
T x=\sum_{i \in I} \sum_{k=1}^{n_{i}} \lambda_{i}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of $\operatorname{ker} T$
which requires ker T to be separable (thus H as well).

Spectral theorem - comments

Choose $\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}\left(n_{i}=\operatorname{dim} E_{i}\right)$ on o.n.b. of E_{i},

$$
\pi_{i} x=\sum_{k=1}^{n_{i}}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

thus

$$
T x=\sum_{i \in I} \sum_{k=1}^{n_{i}} \lambda_{i}\left\langle x, e_{k, i}\right\rangle e_{k, i}
$$

That is, T is diagonalisable in an orthonormal basis of eigenvectors Attention To obtain a basis of H, we mut complete with a basis of ker T which requires ker T to be separable (thus H as well).

Spectral theorem - comments

We would then like to take, $\left|\lambda_{k}\right|$ decreasing to 0 and $\left(e_{k}\right)_{k \in \mathbb{N}}$ o.n.b. of H and

$$
T x=\sum_{k \in \mathbb{N}} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

To do so, rewrite the basis $\bigcup_{i \in I}\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}$ and add a basis of ker T.
If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.
Otherwise we have to mix the 2 bases and lose the fact that $\left|\lambda_{k}\right|$ is non-increasing
Let us put it in practice

Spectral theorem - comments

We would then like to take, $\left|\lambda_{k}\right|$ decreasing to 0 and $\left(e_{k}\right)_{k \in \mathbb{N}}$ o.n.b. of H and

$$
T x=\sum_{k \in \mathbb{N}} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

To do so, rewrite the basis $\bigcup_{i \in I}\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}$ and add a basis of ker T.
If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.
Otherwise we have to mix the 2 bases and lose the fact that $\left|\lambda_{k}\right|$ is non-increasing
Let us put it in practice

Spectral theorem - comments

We would then like to take, $\left|\lambda_{k}\right|$ decreasing to 0 and $\left(e_{k}\right)_{k \in \mathbb{N}}$ o.n.b. of H and

$$
T x=\sum_{k \in \mathbb{N}} \lambda_{k}\left\langle x, \boldsymbol{e}_{k}\right\rangle \boldsymbol{e}_{k}
$$

To do so, rewrite the basis $\bigcup\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}$ and add a basis of ker T. i \in
If $\operatorname{ker} T$ has finite dimension, put this basis at the beginning if its
co-dimension is finite, put it at the end.
Otherwise we have to mix the 2 bases and lose the fact that $\left|\lambda_{k}\right|$ is non-increasing
Let us put it in practice

Spectral theorem - comments

We would then like to take, $\left|\lambda_{k}\right|$ decreasing to 0 and $\left(e_{k}\right)_{k \in \mathbb{N}}$ o.n.b. of H and

$$
T x=\sum_{k \in \mathbb{N}} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

To do so, rewrite the basis $\bigcup\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}$ and add a basis of ker T. i \in
If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.
Otherwise we have to mix the 2 bases and lose the fact that $\left|\lambda_{k}\right|$ is non-increasing
Let us put it in practice

Spectral theorem - comments

We would then like to take, $\left|\lambda_{k}\right|$ decreasing to 0 and $\left(e_{k}\right)_{k \in \mathbb{N}}$ o.n.b. of H and

$$
T x=\sum_{k \in \mathbb{N}} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

To do so, rewrite the basis $\bigcup\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}$ and add a basis of ker T. i $\in 1$
If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.
Otherwise we have to mix the 2 bases and lose the fact that $\left|\lambda_{k}\right|$ is non-increasing
Let us put it in practice

Spectral theorem - comments

We would then like to take, $\left|\lambda_{k}\right|$ decreasing to 0 and $\left(e_{k}\right)_{k \in \mathbb{N}}$ o.n.b. of H and

$$
T x=\sum_{k \in \mathbb{N}} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

To do so, rewrite the basis $\bigcup\left(e_{k, i}\right)_{k=1, \ldots, n_{i}}$ and add a basis of ker T. i $\in 1$
If ker T has finite dimension, put this basis at the beginning if its co-dimension is finite, put it at the end.
Otherwise we have to mix the 2 bases and lose the fact that $\left|\lambda_{k}\right|$ is non-increasing
Let us put it in practice

Théorème spectral - comments

either it stops at some \tilde{e}_{N} (case co-dim $\left.\operatorname{ker} T<+\infty\right)$ or gives an infinite sequence take a basis of ker $T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty$ or $\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$
$e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$
either it stops at some \tilde{e}_{N} (case co-dim $\left.\operatorname{ker} T<+\infty\right)$ or gives an infinite sequence take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty \operatorname{or}\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$ $e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$ either it stops at some \widetilde{e}_{N} (case co-dim $\left.\operatorname{ker} T<+\infty\right)$ or gives an infinite sequence take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty \operatorname{or}\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$ $e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$
either it stops at some \tilde{e}_{N} (case co-dim $\left.\operatorname{ker} T<+\infty\right)$ or gives an infinite sequence take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty \operatorname{or}\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$ $e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$ either it stops at some \tilde{e}_{N} (case co- $\operatorname{dim} \operatorname{ker} T<+\infty$) or gives an infinite sequence
take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty$ or $\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$
$e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$
either it stops at some \tilde{e}_{N} (case co- $\operatorname{dim} \operatorname{ker} T<+\infty$) or gives an infinite sequence take a basis of ker T
otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$
$e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$
either it stops at some \tilde{e}_{N} (case co- $\operatorname{dim} \operatorname{ker} T<+\infty$) or gives an infinite sequence
take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty \operatorname{or}\left(f_{k}\right)_{k \in \mathbb{N}}$
otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$
$e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$
either it stops at some \tilde{e}_{N} (case co-dimker $T<+\infty$) or gives an infinite sequence
take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty$ or $\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Théorème spectral - comments

$e_{1,1}, \ldots, e_{n_{1}, 1}$ basis of $E_{1} \rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{n_{1}}$
$e_{1,2}, \ldots, e_{n_{1}, 2}$ basis of $E_{2} \rightarrow \tilde{e}_{n_{1}+1}, \ldots, \tilde{e}_{n_{1}+n_{2}}$
either it stops at some \tilde{e}_{N} (case co-dimker $T<+\infty$) or gives an infinite sequence
take a basis of $\operatorname{ker} T\left(f_{1}, \ldots, f_{M}\right)$ if $M=\operatorname{dim} \operatorname{ker} T<+\infty$ or $\left(f_{k}\right)_{k \in \mathbb{N}}$ otherwise.

Spectral theorem - comments

Unite both bases

Spectral theorem - comments

Unite both bases

If $c o-\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the
corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If $\operatorname{dim} \operatorname{ker} T=C O-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. T:H \rightarrow H compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0$;

Spectral theorem - comments

Unite both bases

If $c o-\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$.the corresponding
eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0
If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the
corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0$

Spectral theorem - comments

Unite both bases

If $c o-\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k>1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0$, are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0$

Spectral theorem - comments

Unite both bases

If $c o-\operatorname{dim}$ ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If $\operatorname{dim} \operatorname{ker} T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of $H ;$
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0 ;$

$$
T x=\sum \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

Spectral theorem - comments

Unite both bases
If $c o-\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If $\operatorname{dim} \operatorname{ker} T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$.the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H $\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}} r e a l, \lambda_{k} \rightarrow 0$

Spectral theorem - comments

Unite both bases
If $C O-\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$.the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space.

Spectral theorem - comments

Unite both bases
If Co - dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0$;

Spectral theorem - comments

Unite both bases
If Co - dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;

Spectral theorem - comments

Unite both bases
If Co - dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;

Spectral theorem - comments

Unite both bases
If Co - dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}} r e a l$,

Spectral theorem - comments

Unite both bases
If Co - dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If dim ker $T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0$;

Spectral theorem - comments

Unite both bases

If Co - dim ker $T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, \ldots, \tilde{e}_{N}, f_{1}, \ldots$ the corresponding eigenvalues are $\lambda_{1}, \ldots, \lambda_{N}, 0 \ldots$ are decreasing to 0 If $\operatorname{dim} \operatorname{ker} T<+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow f_{1}, \ldots, f_{M}, \tilde{e}_{1}, \ldots$ the corresponding eigenvalues are $0, \ldots, 0, \lambda_{1}, \ldots$ are not decreasing but go to 0 If $\operatorname{dim} \operatorname{ker} T=c o-\operatorname{dim} \operatorname{ker} T=+\infty,\left(e_{k}\right)_{k \geq 1}$ is $\rightarrow \tilde{e}_{1}, f_{1}, \tilde{e}_{2}, f_{2}, \ldots$.the corresponding eigenvalues are $\lambda_{1}, 0, \lambda_{2}, 0, \ldots$ are not decreasing but go to 0 .

Theorem (Spectral Theorem revisited)
H separable, infinite dimnesional, Hilbert space. $T: H \rightarrow H$ compact self-adjoint operator.
$\exists\left(e_{k}\right)_{k \in \mathbb{N}}$ orthonormal basis of H;
$\exists\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ real, $\lambda_{k} \rightarrow 0$;

$$
T x=\sum_{\substack{\begin{subarray}{c}{-k \\
\text { Spectral Theorem }} }}\end{subarray}} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k}
$$

Spectral theorem - Finite dimensional case

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors
real diagonal $A=U D U^{*}$

Spectral theorem - Finite dimensional case

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A=A^{*} \Rightarrow$
real diagonal $A=U D U^{*}$

Spectral theorem - Finite dimensional case

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A=A^{*} \Rightarrow \exists U$ unitary ($U^{-1}=U^{*}$) real diagonal $A=U D U^{*}$

Spectral theorem - Finite dimensional case

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A=A^{*} \Rightarrow \exists U$ unitary $\left(U^{-1}=U^{*}\right) \exists D$ real diagonal

Spectral theorem - Finite dimensional case

Finite dimensional case : self adjoint matrices are diagonalizable in an orthonormal basis of eigenvectors $A=A^{*} \Rightarrow \exists U$ unitary $\left(U^{-1}=U^{*}\right) \exists D$ real diagonal $A=U D U^{*}$.

Spectral theorem - comments

one can also interpret this as T having a matrix of the form

That's all!

Thank you for your attention!

Next video : an example.

http://wWW.u-bordeaux.fr/~pjaming/enseignement/MI.htm

That's all!

Thank you for your attention!

Next video : an example.

http://www.u-bordeaux.fr/~pjaming/enseignement/M1.htm

