
Exercises on numerical methods for chemical kinetics

1 Derivation of the model

In the following we consider a complex chemical reaction composed of 4 simultaneous elementary
reactions involving 6 components A, B, D, E, X and Y .

A
k1→ X, (1)

B +X
k2→ Y +D, (2)

2X + Y
k3→ 3X, (3)

X
k4→ E. (4)

We assume that the concentrations [A] and [B] are kept constant all the time.

1. Write the system of differential equations describing the evolution of the concentrations [D],
[E], [X], and [Y ].
The concentrations [A] and [B] are kept constant, so their evolution is not to be computed
through a differential equation. Following the rules presented in the introduction, the other
concentrations obey the following differential equations :

d[D]
dt

= −k2[B][X],

d[E]
dt

= −k4[X],

d[X]
dt

= k1[A]− k2[B][X]− 2k3[X]2[Y ] + 3k3[X]2[Y ]− k4[X],

d[Y ]
dt

= k2[B][X]− 2k3[X]2[Y ].

2. Explain why the study of this system can be simplified into the study of a system of two equations
with two unknowns X and Y . Write this system.
The evolution of the concentrations [D] and [E] depend only on the concentration [X], while
the evolution of [X] does not depend on [D] and [E]. Therefore, it is possible to compute in a
first time the evolutions of [X] and [Y ] alone, and then deduce the evolution of [D] and [E],
through classical integration formulas. In the following, we thus only consider the following
system :

d[X]
dt

= k1[A]− k2[B][X]− 2k3[X]2[Y ] + 3k3[X]2[Y ]− k4[X], (5)

d[Y ]
dt

= k2[B][X]− 2k3[X]2[Y ]. (6)
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3. The system obtained in the previous question depends on many parameters. To simplify its
qualitative study, we want to identify the most relevant parameters by making linear changes of
variables : we will look for [X] and [Y ] under the form :

[X](t) = αx(γt) and [Y ](t) = βy(γt).

where α, β and γ are real parameters and x and y are the new unknown functions to be
determined.
Prove that we can choose α, β and γ such that the functions x and y satisfy

x′ = a+ x2y − (b+ 1)x (7)
y′ = bx− x2y. (8)

where the only remaining parameters a and b have to be explicitly defined.
From the definition of x and y we can write

[X]′(t) = γαx′(γt) and [Y ]′(t) = γβy′(γt).

If we express the equations (11) and (12) using the functions x and y we get

γ αx′(γt) = k1[A]− k2[B]αx(γt)− 2k3α
2 β x2(γt) y(γt) + 3k3α

2 β x2(γt) y(γt)
−k4αx(γt), (9)

γ β y′(γt) = k2[B]αx(γt)− 2k3α
2 β x2(γt) y(γt). (10)

or equivalently, if we note s = γt

x′(s) =
k1[A]
γ α

− (k2[B] + k4)
γ

x(s) +
k3αβ

γ
x2(s) y(s), (11)

y′(s) =
αk2[B]
γ β

x(s)− 2k3α
2

γ
x2(s) y(s). (12)

We deduce the following relationships :

k1[A]
γ α

= a,

(k2[B] + k4)
γ

= b+ 1,

k3αβ

γ
= 1,

αk2[B]
γ β

= b,

2k3α
2

γ
= 1.
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We solve this system and obtain :

γ =
k2[B] + 2k4

2
,

α =

√
k2[B] + 2k4

4k3
,

β = 2α =

√
k2[B] + 2k4

k3
,

b =
k2[B]

k2[B] + 2k4
,

a =
k1[A]
γ α

=
4k1

√
k3 [A]

(k2[B] + 2k4)3/2
.

2 Numerical method

We define a final time T , and a time step ∆t = T
M . Thus M is the number of time steps that will

be computed with the numerical method described in the following. For all 0 ≤ n ≤ M we define
tn = n∆t. The numerical method that we will study reads

xn+1 − xn

∆t
= a+ (xn)2 yn+1 − (b+ 1)xn+1 (13)

yn+1 − yn

∆t
= bxn+1 − (xn)2 yn+1.

with x0 = x0 ≥ 0 and y0 = y0 ≥ 0 the initial conditions of the system.

1. Prove that the numerical scheme (13) can be re-written

An

(
xn+1

yn+1

)
=
(
xn + ∆ta

yn

)
with An a 2× 2 matrix that is to be written explicitly.
The numerical scheme can be re-written

xn+1 = xn + a∆t+ ∆t (xn)2 yn+1 −∆t (b+ 1)xn+1

yn+1 = yn + ∆t b xn+1 −∆t (xn)2 yn+1.

or equivalently

xn+1 −∆t (xn)2 yn+1 + ∆t (b+ 1)xn+1 = xn + a∆t
yn+1 −∆t b xn+1 + ∆t (xn)2 yn+1 = yn.

or equivalently(
1 + ∆t(b+ 1) −(xn)2∆t
−∆tb 1 + ∆t(xn)2

)(
xn+1

yn+1

)
=

(
xn + ∆ta

yn

)
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Thus the matrix An is defined by :

An =
(

1 + ∆t(b+ 1) −(xn)2∆t
−∆t b 1 + ∆t(xn)2

)
2. Prove that for all n ≥ 0 An is invertible, and deduce from this result that the numerical scheme

is well-defined.
We compute the discriminant δ of An.

δ = (1 + ∆t(b+ 1))× (1 + ∆t(xn)2)−∆t2b(xn)2

= 1 + ∆t(b+ 1) + ∆t(xn)2 + ∆t2(b+ 1)(xn)2 −∆t2b(xn)2

= 1 + ∆t(b+ 1) + ∆t(xn)2 + ∆t2(xn)2 > 0

Thus An is invertible for all n ≥ 0.

3. Prove that all coefficients of A−1
n are positive, and that xn and yn are positive for all n ≥ 0.

A−1
n =

1
δ

(
1 + ∆t(xn)2 (xn)2∆t

∆t b 1 + ∆t(b+ 1)

)
We know that δ > 0 thus all coefficients of A−1

n are positive. Consequently, because x0 and y0

are positive, we can prove with a reasoning by recurrence that xn and yn are positive for all
n ≥ 0.

4. Prove that
∀n ≥ 0, xn+1 + yn+1 ≤ xn + yn + a∆t

(
xn+1

yn+1

)
= A−1

n

(
xn + ∆ta

yn

)
=

1
δ

(
1 + ∆t(xn)2 (xn)2∆t

∆t b 1 + ∆t(b+ 1)

)(
xn + ∆ta

yn

)

xn+1 + yn+1 =
1
δ

(
(1 + ∆t(xn)2)(xn + ∆ta) + yn(xn)2∆t+ ∆t b(xn + ∆ta) + (1 + ∆t(b+ 1))yn

)
Instead of computing explicitly xn+1 + yn+1, which can be tedious, we want to prove that

δ(xn+1 + yn+1) ≤ δ(xn + yn + a∆t)

which is equivalent to :

(1 + ∆t(xn)2)(xn + ∆ta) + yn(xn)2∆t

+∆t b(xn + ∆ta) + (1 + ∆t(b+ 1))yn ≤
(

1 + ∆t(b+ 1) + ∆t(xn)2 + ∆t2(xn)2)(xn + yn + a∆t
)

We develop the right-hand side and check that it is superior to the left-hand side.
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5. Deduce from the previous result that there exists a constant C > 0 only depending of the date
of the problem such that

sup
n≤M

||
(
xn

yn

)
|| ≤ C.

We define the consistency errors Rn
x and Rn

y by

Rn
x =

x(tn+1)− x(tn)
∆t

− a− (x(tn))2 y(tn+1) + (b+ 1)x(tn+1) (14)

Rn
y =

y(tn+1)− y(tn)
∆t

− bx(tn+1) + (x(tn))2 y(tn+1). (15)

Be careful, there was a misspell in the original text of the exercise, for the defi-
nition of Rn

y . Here this misspell has been corrected.

Prove that there exists a constant C2 > 0 only depending of the data of the problem such that

sup
n≤M

(|Rn
x |+ |Rn

y |) ≤ C2∆t.

We deduce from the previous result, with a reasoning by recurrence, that :

xn + yn ≤ x0 + y0 + an∆t,∀n ≥ 0

Therefore,

sup
n≤M

||
(
xn

yn

)
||1 = sup

n≤M
{xn + yn} ≤ x0 + y0 + aM ∆t = C

Because in finite dimension all norms are equivalent, if we use another norm, we will find the
same inequality with a different constant C.
We make Taylor series expansions of x(tn+1) and y(tn+1) with respect to tn :

x(tn+1) = x(tn) + ∆tx′(tn) +O(∆t2)
y(tn+1) = y(tn) + ∆ty′(tn) +O(∆t2).

Because x and y are solutions of the differential system (7)-(8), they satisfy :

x′(tn) = a+ x2(tn)y(tn)− (b+ 1)x(tn)
y′(tn) = bx(tn)− x2(tn)y(tn).

We deduce from these four relationships that

Rn
x = x′(tn) +O(∆t)− a− (x(tn))2

(
y(tn) + ∆ty′(tn) +O(∆t2)

)
+(b+ 1)

(
x(tn) + ∆tx′(tn) +O(∆t2)

)
= x′(tn)− a− (x(tn))2 (y(tn) + (b+ 1)x(tn) +O(∆t)
= O(∆t)

Rn
y = y′(tn) +O(∆t)− b

(
x(tn) + ∆tx′(tn) +O(∆t2)

)
−(x(tn))2

(
y(tn) + ∆ty′(tn) +O(∆t2)

)
= y′(tn) +O(∆t)− b(x(tn) +O(∆t))− (x(tn))2 y(tn) +O(∆t)
= O(∆t)
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Therefore there exists a constant C2 > 0 only depending of the data of the problem such that

sup
n≤M

(|Rn
x |+ |Rn

y |) ≤ C2∆t.

6. We define the approximation errors enx = x(tn) − xn and eny = y(tn) − yn. We admit as a
consequence of the results of the previous questions that there exists a constant C3 > 0 only
depending of the data of the problem such that

|en+1
x | ≤ |enx|+ C3∆t(|enx|+ |eny |) + C3∆t(|Rn

x |+ |Rn
y |)

|en+1
y | ≤ |eny |+ C3∆t(|enx|+ |eny |) + C3∆t(|Rn

x |+ |Rn
y |).

Deduce from the previous inequalities the error estimation

sup
n≤M

(
|enx|+ |eny |

)
≤ C4∆t

with C4 > 0 a constant. Make a conclusion about the convergence of the numerical method.
We start from the result of the previous question :

|en+1
x | ≤ |enx|+ C3∆t(|enx|+ |eny |) + C3∆t(|Rn

x |+ |Rn
y |)

|en+1
y | ≤ |eny |+ C3∆t(|enx|+ |eny |) + C3∆t(|Rn

x |+ |Rn
y |).

If we sum both equations we can write :

|en+1
x |+ |en+1

y | ≤ |enx|+ |eny |+ 2C3∆t(|enx|+ |eny |) + 2C3∆t(|Rn
x |+ |Rn

y |)
≤ (1 + 2C3∆t)(|enx|+ |eny |) + 2C2C3∆t2

≤ (1 + 2C3∆t)(|enx|+ |eny |) + 2C2C3∆t2

With a reasoning by recurrence we can prove that

|enx|+ |eny | ≤ (1 + 2C3∆t)n(|e0
x|

=0
+ |e0

y|
=0

) +
n∑

i=0

(1 + 2C3∆t)i2C2C3∆t2

≤ 2C2C3∆t2
n−1∑
i=0

(1 + 2C3∆t)i

≤ 2C2C3∆t2n(1 + 2C3∆t)n

Now we use the fact that 1 + u ≤ eu for all u ≥ 0.

|enx|+ |eny | ≤ 2C2C3∆t2n (e2C3∆t)n

≤ 2C2C3∆t2n en2C3∆t

If n ≤M it means that n∆t ≤ T . Thus for all n ≤M we have :

|enx|+ |eny | ≤ 2C2C3∆t T e2C3∆T

We have proved the expected result with C4 = 2C2C3e
2C3∆T . This result means that the

numerical method converges to the exact solution of the differential system when ∆t→ 0.
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