
Convergence study of the Euler method

We consider the one-dimensional differential equation :

y′ = f(x, y) (1)
y(x0) = y0. (2)

We are looking for a numerical approximation of y(X) with X > x0.

We consider also a subdivision of the interval of integration :

x0, x1, x2, . . . , xn−1, xn = X

and compute on each point xi with 1 ≤ i ≤ n the numerical solution yi approximation y(xi) using
Euler’s method :

yi+1 = yi + (xi+1 − xi)f(xi, yi) (3)

For the subdivision we use the notation :

hi = xi+1 − xi

and we denote

h = (h0, h1, . . . , hn). (4)

If we connect y0 and y1, y1 and y2, etc by straight lines we obtain the so-called Euler polygon defined
by :

yh(x) = yi + (x− xi)f(xi, yi) for xi ≤ x ≤ xi=1. (5)

Proposition 0.1. We assume that |f | is bounded by A on the domain D = {(x, y) |x0 ≤ x ≤ X, |y − y0| ≤ b},

and that X − x0 ≤
b

A
. Then the numerical solution given by (3) remains in D for every subdivision

of the type (4) and

|yh(x)− y0| ≤ A|x− x0|, (6)
|yh(x)−

(
y0 + (x− x0)f(x0, y0)

)
| ≤ ε|x− x0| (7)

if |f(x, y)− f(x0, y0) ≤ ε| on D.

Démonstration. Both inequalities are obtained by summing the relationships (3) are using triangle
inequalities.
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Next step is to find an estimation for the variation of the numerical solution if the initial value
changes. Let z0 be another initial condition. We compute

z1 = z0 + (x1 − x0)f(x0, y0) (8)

and look for an estimate of |z1 − y1|. We substract (8) from the respective relationship of the type
(3) to obtain :

z1 − y1 = z0 − y0 + (x1 − x0)
(
f(x0, y0)− f(x1, y1)

)
We thus need an estimate for

(
f(x0, y0)−f(x1, y1)

)
. If we suppose that f satisfies a Lipschitz condition(

f(x0, y0)− f(x1, y1)
)
≤ L|z − y| (9)

we obtain
|z1 − y1| ≤ (1 + (x1 − x0)L)|z0 − y0|.

Proposition 0.2. For a fixed subdivision h let yh(x) and zh(x) be the Euler polygons corresponding
to the initial values y0 and z0 respectively. If

|∂f
∂y

(x, y)| ≤ L (10)

in a convex region containing (x, yh(x)) and (x, zh(x)) for all x0 ≤ x ≤ X, then

|zh(x)− yh(x)| ≤ eL(x−x0)|z0 − y0| (11)

Démonstration. Inequality (10) implies(
f(x0, y0)− f(x1, y1)

)
≤ L|z − y|

which implies
|z1 − y1| ≤ eL(x1−x0)|z0 − y0|

Then we repeat the same argument for z2 − y2 , z3 − y3 etc to obtain the final inequality.

Now we want to handle the convergence of the numerical solution to the exact solution of the
differential equation.

Proposition 0.3. We suppose that f is continuous and |f | is bounded by A and satisfies a Lipschitz

condition on the domain D. If X − x0 ≤
b

A
then we have

– If max
i
hi → 0 the Euler polygon yh(x) converge uniformly to a continuous fonction φ.

– φ is continuously differentiable and is the unique solution of the differential equation (1) on x0 ≤
x ≤ X

Démonstration. Let us consider ε > 0. Since f is uniformly continuous on the compact set D there
exists a δ > 0 such that

|u1 − u2| ≤ δ and |v1 − v2| ≤ Aδ

implies

|f(u1, v1)− f(u2, v2)| ≤ ε (12)
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We suppose now that the subdivision h satisfies

max
i
hi ≤ δ. (13)

We first study the effect of adding new mesh points. In a first step, we consider a subdivision h(1)
which is obtained by adding new points only to the first subinterval. It follows from (7) (applied to
this first subinterval) that for the new refined solution yh(1)(x1) we have the estimate

|yh(1)(x1)− yh(x1)| ≤ ε|x1 − x0|.

Since the subdivisions h and h(1) are identical on x1 ≤ x ≤ X we can apply Proposition 0.2 to obtain

|yh(1)(x)− yh(x)| ≤ eL(x−x1)(x1 − x0)ε for x1 ≤ x ≤ X.

We next add further points to the subinterval (x1, x2) and denote the new subdivision by h(2). In
the same way as above this leads to

|yh(2)(x2)− yh(1)(x2)| ≤ ε|x2 − x1|

and
|yh(2)(x)− yh(1)(x)| ≤ eL(x−x2)(x2 − x1)ε for x2 ≤ x ≤ X.

If we denote by ĥ the final refinement, we obtain for xi ≤ x ≤ xi+1

|yĥ(x)− yh(x)| ≤ ε
(
eL(x−x1)(x1 − x0) + . . .+ eL(x−xi)(xi − xi−1)

)
+ ε(x− xi)

≤ ε

∫ x

x0

eL(x−s)ds =
ε

L

(
eL(x−x0) − 1

)
If now we have two different subdivisions h and h̃, which both satisfy (13), we introduce a third
subdivision ĥ which is a refinement of both subdivisions, and apply (14) twice. We then obtain from
(14) by the triangle inequality

|yh(x)− yh̃(x)| ≤ 2
ε

L

(
eL(x−x−0) − 1

)
.

For ε > 0 small enough, this becomes arbitrary small and shows the convergence of the Euler polygons
to a continuous function φ(x).

Now we define

ε(δ) = sup {|f(u1, v1)− f(u2, v2)| ; |u1 − u2| ≤ δ, |v1 − v2| ≤ Aδ, (ui, vi) ∈ D} .

If x belongs to the subdivision h then we obtain from (7) (replace (x0, y0) by (x, yh(x)) and x by
x+ δ)

|yh(x+ δ)− yh(x)− δf(x, yh(x))| ≤ ε(δ) δ.

Taking the limit max
i
hi → 0 we get

|φ(x+ δ)− φ(x)− δ f(x, φ(x))| ≤ ε(δ) δ.

Since ε(δ)→ 0 for δ → 0 this proves the differentiability of φ(x) and φ′(x) = f(x, φ(x)).
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Now let ψ(x) be a second solution of the differential equation and suppose that the subdivision h

satisfies (13). We then denote by y
(i)
h (x) the Euler polygon to the initial value (xi, ψ(xi)), which is

defined for xi ≤ x ≤ X. It follows from

ψ(x) = ψ(xi) +
∫ x

xi

f(s, ψ(s)) ds

and (12) that
|ψ(x)− y(i)

h (x)| ≤ ε|x− xi| for xi ≤ x ≤ xi+1.

Using Proposition 0.2 we deduce in the same way as above that

|ψ(x)− yh(x)| ≤ ε

L

(
eL(x−x0) − 1

)
.

Taking the limit max
i
hi → 0 and ε→ 0 we obtain |ψ(x)− φ(x)| ≤ 0, which proves uniqueness.

Proposition 0.4. Suppose that in a neighborhood of the solution

|f | ≤ A , |∂f
∂y
| ≤ L ; |∂f

∂x
| ≤M.

We then have the following error estimate for the Euler polygons :

|y(x)− yh(x)| ≤ M +AL

L

(
eL(x−x0) − 1

)
max

i
hi

provided that max
i
hi is sufficiently small.

Démonstration. For |u1−u2| ≤ max
i
hi and |v1−v2| ≤ Amax

i
hi we obtain, due to the differentiability

of f , the estimate
|f(u1, v1)− f(u2, v2)| ≤ (M +AL)max

i
hi.

When we insert this amount for ε into (14), we obtain the stated result.
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