
Numerical methods
to solve Ordinary Differential Equations

Didier Gonze

December 3, 2009

I have come to believe that ones knowledge of any dynamical system is defi-

cient unless one knows a valid way to numerically simulate that system on a

computer.

Daniel T. Gillespie

Source: Pahle J. Brief Bioinform 10:53-64 (2009)

Introduction

Differential equations can describe nearly all systems undergoing change. They are
widespread in physics, engineering, economics, social science, but also in biology. Many
mathematicians have studied the nature of these equations and many complicated sys-
tems can be described quite precisely with compact mathematical expressions. However,
many systems involving differential equations are so complex, or the systems that they
describe are so large, that a purely mathematical analysis is not possible. It is in these
complex systems where computer simulations and numerical approximations are useful.

The techniques for solving differential equations based on numerical approximations were
developed long before programmable computers existed. It was common to see equations
solved in rooms of people working on mechanical calculators. As computers have increased
in speed and decreased in cost, increasingly complex systems of differential equations
can be solved on a common PC. Currently, your laptop could compute the long term
trajectories of about 1 million interacting molecules with relative ease, a problem that
was inaccessible to the fastest supercomputers just 5 or 10 years ago.

1768 Leonhard Euler publishes his method.
1824 Augustin Louis Cauchy proves convergence of the Euler method.

In this proof, Cauchy uses the implicit Euler method.
1895 Carl Runge publishes the first Runge-Kutta method.
1905 Martin Kutta describes the popular fourth-order Runge-Kutta method.
1952 C.F. Curtiss and J.O. Hirschfelder coin the term stiff equations.

Source: Wikipedia (http://en.wikipedia.org/wiki/Numerical ordinary differential equations)



Principle

Most often, systems of differential equations can not be solved analytically. Algorithms
based on numerical methods are therefore needed. By “numerical integration”, we mean
to compute, from an initial point x0 (the initial condition), each successive point x1, x2,

x3,.. that satisfy evolution equation
dx

dt
= f(t, x). An algorithm is thus a program that

computes as precisely as possible xn+1 from xn. Of course, x can be a vector and the
evolution equations can be non-linear coupled differential equations.

Figure 1: Principle of the numerical integration.

We present here the principle, application, and limitation of some basic numerical meth-
ods. These methods include Euler, Heun, and Runge & Kutta. More complex methods,
required for stiff systems, are briefly discussed.

Figure 2: Leonhard Euler (1707-1783).

2



Euler algorithm

Principle

Let’s consider the following differential equation:

dx

dt
= f(t, x) (1)

The formula for the Euler method is:

xn+1 = xn + ∆t.f(tn, xn) (2)

Given a time step ∆t (to be specified by the user), the formula thus directly calculates
the point xn+1 from the xn by computing the derivative at xn. The principle is illustrated
in Fig. 3.

Figure 3: Principle of the Euler method.

Euler’s method is not recommended for practical use because it is not very accurate
compared to other methods that run at the equivalent step size. Indeed, as illustrated in
Fig. 3, the imprecision comes from the fact that the derivative between tn and tn + ∆t

changes while Euler formula relies only on the derivative at time tn. Smaller the step size,
smaller the error.

3



Example 1

We illustrate here some results (and errors) obtained when applying the Euler method.

Let’s consider the simple differential equation:

dx

dt
= x (3)

with the initial condition x(0) = 1.

Figure 4 gives the time points obtained by simulating eq. (3) using the Euler formula (2)
with time step ∆t = 0.2. The blue curve gives the data points computed, the black curve
is the exact solution (x = et). The red bar indicates the error at time t = 2.

The error depends on the time step ∆t. Table 1 gives the computed point, the exact
solution and the error calculated at time t = 2 for different time step.

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

Time t

V
ar

ia
bl

e 
x

 

 
Euler, step size = 0.2
Exact solution

Figure 4: Euler method in application (example 1).

Time step Computed point Exact point Error (%) CPU time (s)
∆t = 0.5 5.062500 7.389056 31.48 <0.01
∆t = 0.2 6.191736 7.389056 16.20 <0.01
∆t = 0.1 6.727500 7.389056 8.953 <0.01
∆t = 0.02 7.039988 7.389056 4.724 <0.01
∆t = 0.05 7.244646 7.389056 1.954 <0.01
∆t = 0.01 7.316018 7.389056 0.988 <0.01
∆t = 0.001 7.381676 7.389056 0.100 0.15
∆t = 0.0001 7.388317 7.389056 0.010 12.2

Table 1: Error obtained with the Euler method.

4



Example 2

Now, consider the simple differential equation:

dx

dt
= −x (4)

with the initial condition x(0) = 1.

Figure 5 gives the time points obtained by simulating eq. (4) using the Euler formula
(2) with time step ∆t = 1.5. The blue curve gives the data points computed, the black
curve is the exact solution (x = e−t). As we can see in this example, the error is not only
quantitative but also qualitative: numerical integration produces artefactual oscillations

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

Time t

V
ar

ia
bl

e 
x

 

 
Euler, step size = 1.5
Exact solution

Figure 5: Euler method in application (example 2).

5



Estimation of the error

In order to estimate the error in the approximation to the derivative in the Euler approx-
imation, let us consider the Taylor series approximation of the function f . If we assume
that we have all the data (f and it’s derivatives) at t = 0, then the value of the function
at time t = ∆t is given by

f(∆t) = f(t = 0) + ∆t
df

dt

∣

∣

∣

t=0

+
∆t2

2

d2f

dt2

∣

∣

∣

t=0

+
∆t3

6

d3f

dt3

∣

∣

∣

t=0

+ ... (5)

Rearranging this equation yields

f(∆t) − f(t = 0)

∆t
=

df

dt

∣

∣

∣

t=0

+
∆t

2

d2f

dt2

∣

∣

∣

t=0

+
∆t2

6

d3f

dt3

∣

∣

∣

t=0

+ ... (6)

Since ∆t is small then the series of terms on the right hand side is dominated by the term
with the smallest power of ∆t, i.e.

f(∆t) − f(t = 0)

∆t
≈

df

dt

∣

∣

∣

t=0

+
∆t

2

d2f

dt2

∣

∣

∣

t=0

(7)

Therefore, the Euler approximation to the derivative is off by a factor proportional to ∆t.
We say that the errore is of order ∆t2 and we write O(∆t2). The good news is that the
error goes to zero as smaller and smaller time steps are taken. The bad news is that we
need to take very small time steps to get good answers (cf. Summary by Storey).

We call the error in the approximation to the derivative over one time step the local

truncation error. This error occurs over one time step and can be estimated from the
Taylor series, as we have just shown (cf. Summary by Storey).

In the next section we present alternative numerical methods with leads to a better
accuracy without requiring much extra work.

6



Backward Euler method

Equation 2 can be written as

f(tn, xn) ≈
xn+1 − xn

∆t
(8)

We thus compute xn+1 assuming that the derivative of f at point (tn, xn). This is equiv-
alent to say that the derivative at point (tn+1, xn+1) is the same as at point (tn, xn):

f(tn+1, xn+1) ≈
xn+1 − xn

∆t
(9)

We then find
xn+1 = xn + ∆tf(tn+1, xn+1) (10)

We can thus find xn+1 from x by solving the algebraic equation 10. This is the backward
Euler method. The backward Euler method is said implicit because we do not have an
explicit expression for xn+1. Of course, it costs CPU time to solve this equation; this cost
must be taken into consideration when one selects the method to use. The advantage
of implicit methods such as 10 is that they are usually more stable for solving a stiff
equation, meaning that a larger step size ∆t can be used.

7



Heun algorithm

Principle

Instead of computing the derivative only at the starting point xn, a better estimation is
given when the slope is computed as the average between the derivative at the starting
point xn and the derivative at the end point xn+1:

xn+1 = xn +
∆t

2
(f(tn+1, xn+1) + f(tn + xn)) (11)

We do not know the end point xn+1 (this is the point we want to calculate!), but we can
estimate it using the Euler method:

x∗

n+1 = xn + ∆tf(tn + xn) (12)

and
t∗
n+1 = tn + ∆t (13)

The principle of the Heun algorithm is illustrated in Fig. 6. The grey dot represent the
estimate x∗

n+1 obtained using the Euler method.

Figure 6: Principle of the Heun method.

Because this algorithm can be seen as an improvement of the Euler method, it is sometimes
refered to as an improved Euler algorithm. This is an example of predictor-corrector

algorithm.

8



Example

We illustrate here some results (and errors) obtained when applying the Heun method.

As for the Euler method, we will consider the simple differential equation:

dx

dt
= x (14)

with the initial condition x(0) = 1.

Figure 7 gives the time points obtained by simulating eq. (17) using the Heun formulas
(11) and (12) with time step ∆t = 0.2. The blue curve gives the data points computed,
the black curve is the exact solution. We already see that the error is much reduced
compare to the error obtained with the Euler algorithm.

Here also, the error depends on the time step ∆t. Table 2 gives the computed point, the
exact solution and the error calculated at time t = 2 for different time step:

0 0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

14

Time t

V
ar

ia
bl

e 
x

 

 
Euler, step size = 0.2
Exact solution

Figure 7: Heun method in application.

Time step Computed point Exact point Error (%) CPU time (s)
∆t = 0.5 6.972900 7.389056 5.63 <0.01
∆t = 0.2 7.304631 7.389056 1.14 <0.01
∆t = 0.1 7.366235 7.389056 0.309 <0.01
∆t = 0.02 7.388086 7.389056 0.131 <0.01
∆t = 0.05 7.383127 7.389056 0.0802 <0.01
∆t = 0.01 7.388812 7.389056 0.0331 <0.01
∆t = 0.001 7.389054 7.389056 0.00003 0.13
∆t = 0.0001 7.389056 7.389056 E-7 12.0

Table 2: Error obtained with the Heun method.

9



Runge & Kutta algorithms

Second-order Runge & Kutta

Another estimation of the slope is the derivative at the mid-point between t and t + ∆t.

Consider the use of step like the one defined by the Euler formula (2) to take a “trial”
step to the mid-point of the interval. Then we can use the value of both t and x at that
mid-point to compute the real step across the whole interval. Fig. 8 illustrates this idea.
The equations are then:

k1 = ∆t.f(tn, xn)

k2 = ∆t.f

(

tn +
∆t

2
, xn +

k1

2

)

xn+1 = xn + k2 + 0(∆t3) (15)

This method is called the second-order Runge & Kutta algorithm or the mid-point method.

Figure 8: Principle of the second-order Runge & Kutta method

10



Fourth-order Runge & Kutta

More often used is the classical four-order Runge & Kutta algorithm:

k1 = ∆t.f(tn, xn)

k2 = ∆t.f

(

tn +
∆t

2
, xn +

k1

2

)

k3 = ∆t.f

(

tn +
∆t

2
, xn +

k2

2

)

k4 = ∆t.f (tn + ∆t, xn + k3)

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ 0(∆t3) (16)

Figure 9: Principle of the fourth-order Runge & Kutta

Adaptative step size

As with the previous methods the error depends on the step size. Small step size leads to
a better precision, but require larger CPU time. Adaptative step size methods allows to
change the step size during the integration.

11



Example

We illustrate here some results (and errors) obtained when applying the Runge-Kutta
method (order 2 vs order 4).

As for the previous methods, we will consider the simple differential equation:

dx

dt
= x (17)

with the initial condition x(0) = 1.

Here also, the error depends on the time step ∆t. Table 3 gives the computed points
(obtained using the RK2 or RK4 method), the exact solution, and the error calculated at
time t = 2 for different time step:

Time step Exact point Computed point Error (%) Computed point Error (%)
(RK2) (RK2) (RK4) (RK4)

∆t = 0.5 7.389056 6.972900 0.056320 7.383970 6.8828E-04
∆t = 0.2 7.389056 7.304631 0.011426 7.388889 2.2581E-05
∆t = 0.1 7.389056 7.366235 0.003088 7.389045 1.5335E-06
∆t = 0.05 7.389056 7.383127 0.00080238 7.389055 9.9918E-08
∆t = 0.02 7.389056 7.388086 0.00013134 7.389056 2.6226E-09
∆t = 0.01 7.389056 7.388812 3.3083E-05 7.389056 1.6528E-10
∆t = 0.001 7.389056 7.389054 3.3308E-07 7.389056 1.5385E-14
∆t = 0.0001 7.389056 7.389056 3.3331E-09 7.389056 5.1686E-15

Table 3: Error obtained with the Runge-Kutta method.

12



Other methods (for “stiff” systems)

Stiff systems of ordinary differential equations represent a “special case” of the systems.
There is no universally accepted definition of stiffness. Rather than proposing a pre-
cise mathematical definition of “stiffness”, we will consider here that “stiff” systems are
systems in which “abrupt transition” (discontinuity) are observed in the time series, as
shown in Fig. 10. Such abrupt transitions often result from different time scales in the
dynamics.

Time

V
ar

ia
bl

e

Figure 10: Example of a stiff system

To simulate precisely the abrupt transition, it is required to have a very small time steps,
but reducing the time step may drastically increases the computational time. Often, even
the adaptative time steps programs mentionned above are not appropriate. Therefore,
algorithms specifically designed to solve such stiff systems have been proposed. GEAR
is an example of such algorithm (Gear, 1969). The GEAR method is an auto-adaptative
implicit algorithm which can select time step and change order automatically.

13



In practice...

How to know if my solution is correct?

One of the big difficulties in using numerical methods is that takes very little time to get
an answer, it takes much longer to decide if it is right. Usually the first test is to check
that the system is behaving physically/biologically. Usually before running simulations it
is best to use physics/biological arguments to try and understand qualitatively what you
think your system will do. Will it oscillate, will it grow, will it decay?

We already encountered unrealistic behavior using Euler’s method (see fig. 5). These
artifacts often occur when the time step is too large. One simple test of a numerical
method is to change the time step ∆t and see what happens. If you have implemented
the method correctly (and its a good method) the answer should converge as the time step
is decreased. If you know the order of your approximation then you know how fast this
decrease should happen. If the method has an error proportional to ∆t then you know
that cutting the time step in half should cut the error in half. You should nevertheless
keep in mind that it is not because the solution converges that it is correct (cf. Summary
by Storey).

Softwares

There are many mathematical softwares that have built-in functions to perform numerical
integration of ODE.

Matlab has several ODE solver and provides some recommendations:

Method Problem type Accuracy When to use
ode45 Nonstiff Medium Most of the time, should be the first solver to try.
ode23 Nonstiff Low For problems with crude error tolerances

or for solving moderately stiff problems.
ode113 Nonstiff Low/high For problems with stringent error tolerances

or for solving computationally intensive problems.
ode15s Stiff Low/medium If ode45 is slow because the problem is stiff.
ode23s Stiff Low If using crude error tolerances to solve stiff systems

and the mass matrix is constant.

XXP-AUTO, a free-ware software, specially designed to solve ODE has also several
method implemented (Euler, BackEul, Heun, RK, Gear, Stiff,...). By default it uses
a adaptative step size RK method.

14



References

Books

• Numerical recipes in C: The art of scientific computing (1992)

• Cushing (2004) Differential equations: an applied approach, Pearson Prentice Hall

On-line courses

• Storey BD, ”Numerical Methods for Ordinary Differential Equations”
(http://icb.olin.edu/fall 02/ec/reading/DiffEq.pdf)

Web sites

• http://www.nrbook.com/a/bookcpdf.php

• http://en.wikipedia.org/wiki/Numerical ordinary differential equations

• http://en.wikipedia.org/wiki/Stiff equation

• http://en.wikipedia.org/wiki/Runge-Kutta method

15


