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For a nice non-mathematical introduction to Kepler take a look at [3]. It’s a good
read.

An elementary modern introduction to classical mechanics is [4]. This book has a
clean discussion of the 2-body problem and transfer orbits and gives you the tools
to solve a number of interesting problems. Plan your own Grand Tour!

1 A Bit of History

Eudoxus who was born around 400 BC constructed a solar system model involving
some 27 spheres. Aristotle, wanting more precision, added another 29 spheres,
bringing the total to 56! Later, around 125 AD, Hipparchus and Ptolemy worked
out an epicycle theory. They probably realized that their descriptions were simply
encodings of observational data and a system of extrapolation and not a physical
theory. An analogous idea is to approximate any period process by a trigonometric
polynomial, that is, by a partial sum of a Fourier series. It works, but is hardly a
physical theory. It is precisely the fact that the epicycle description is not a physical
theory, and not its geocentrism which is its major drawback. The accuracy was only
tolerable, say lunar eclipses within an hour, but could be improved, at the cost of
greater complexity, by adding additional epicycles.

By some mysterious process the Ptolemaic vision became official church doctrine
in medieval Europe - the circles and constant angular velocities in the model be-
came articles of faith! This says a lot more about the nature of bureaucrazy than it
does about the solar system! It’s particularly frightening if we remember that our
ancestors in medieval Europe (and earlier in Classical Greece) had precisely the
same mental equipment as we do.
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Copernicus (1473-1543) published his heliocentric theory of the solar system in
1543. His theory used epicycles as did the geocentric theory of Ptolemy but it was
simpler (though not simple) to use and required far fewer epicycles. The helio-
centric theory was not really in any better accord with observation than the current
version of the geocentric Ptolemy theory but it treated the motions of all the planets
in the same way. Ptolemy, as you might expect, had to treat the inner and outer
planets differently. Both systems are capable of refinement by introducing addi-
tional epicycles (and complexity) but that would diminish one of the main reasons to
adopt heliocentrism. The discrepancies between the initial heliocentric theory and
observation were so large that agreement with observation was not a compelling
reason to adopt heliocentrism in place of geocentrism. Astronomers such as Ty-
cho Brahe (1546-1601) were not inclined to adopt it though people who computed
tables found it more convenient.

Copernicus’ achievement was not just the adoption of heliocentrism but an empha-
sis on simplicity (a relative term here) and his opposition to entrenched authority.

Johannes Kepler (1571-1630) worked as an assistant to Tycho Brahe in his obser-
vatory. After 14 years of observing Mars he formulated his three laws of motion for
the planets (stated below) and introduced a version of heliocentrism based on the el-
lipse rather than the circle (and totally devoid of epicycles). This was an impressive
achievement. I can not resist quoting Hubbard and West [6]:

Even knowing that these laws are true, and using a calculator and a
telescope, it is not clear what you should observe in order to confirm
them. One cannot be but struck at the amazing genius it must have
taken for a person, without a telescope or any accurate means of mea-
surement, before the invention of analytic geometry, and without any
way to determine the distances of any celestial bodies, to take the re-
sults of 14 years of observations and come up with such laws. If you
consider that Tycho’s observatory was on an island between Denmark
and Sweden, which must be, next to Ithaca, the cloudiest place in the
world, the records must have been pretty spotty in the extreme.

Of course Kepler was not concerned just with the shape of the orbit but also with
the time element, that is, the problem of predicting the position at a given time.
Kepler’s equation gives the time in terms of the position. As you might expect, Ke-
pler’s problem is the problem of solving for the position in terms of the time. Isaac
Newton (1642–1727), among many other things, proved that Kepler’s equation can-
not be solved in algebraic functions. Numerous people have devised schemes for
finding approximate solutions.
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In 1738 Daniell Bernoulli (1700-1782) published a paper concerning the oscillation
of heavy chains. The power series for the Bessel function J0 occurs in this paper,
probably for the first time. The Bessel functions of arbitrary integral order first oc-
cured in the work of Leonhard Euler (1707-1783) on vibrations of membranes in
1764. The Bessel functions of small integral order occur in the approximate solution
to Kepler’s problem found by Joseph-Louis Lagrange (1736-1813) around 1770.
Circa 1816 Friedrich Wilhelm Bessel (1784-1846) discovered the exact version of
Lagrange’s solution to Kepler’s problem (as an infinite series). We will derive this
solution below. About the same time F. Carlini studied the asymptotic properties
of Bessel functions in order to investigate the convergence of the Lagrange–Bessel
solution to Kepler’s problem. Around 1824 Bessel investigated in detail the proper-
ties of the Bessel functions and laid the foundations for an area of study which has
grown a great deal since then.

A great deal of modern analysis, in particular analytic function theory, grew out of
the investigations of Lagrange, Carlini, Bessel and others on Kepler’s problem, To
some extent Augustin Cauchy (1759–1857) was led to create a large part of modern
complex analysis because of his study of convergence of a series solution of Ke-
pler’s problem, [1]. The other main creators of complex analysis and analytic func-
tion theory were of course Weierstrass (1815–1897) and Riemann (1826–1866), but
we do not discuss them here.

2 The Two Body Problem

The 2-body problem deals with two point masses moving in Euclidean 3-space in
accord with the differential equations:

m1
d2~u1

dt2 = Gm1m2
~u2 −~u1

‖~u2 −~u1‖3

m2
d2~u2

dt2 = Gm1m2
~u1 −~u2

‖~u2 −~u1‖3

where G is Newton’s universal constant of gravitation. With breathless courage
Newton declared G to be constant throughout the universe. This claim of course
makes it possible to compute G from near Earth, or even laboratory, measurements.
It is known that

G = 6.670 ×10−8 dyne-cm2/gm2

though I confess I have very little feeling for the somewhat mysterious units.
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If we add the two equations together we deduce that the center of mass

~R0 =
m1~u1 +m2~u2

m1 +m2

moves along a straight line with constant velocity. This observation yields 6 first
integrals for the system above and so allows us to reduce the order to 12−6 = 6. We
can achieve the reduction explicitly by referring the motion to the center of mass.
This amounts to using a new inerial frame.

Let~r1 =~u1 −~R0 and~r2 =~u2 −~R0. A quick calculation shows

d2~r1

dt2 = −µ1
~r1

‖~r1‖3 , µ1 =
Gm3

2

(m1 +m2)2

d2~r2

dt2 = −µ2
~r2

‖~r2‖3 , µ2 =
Gm3

1

(m1 +m2)2 .

Here µ1 and µ2 are known as the gravitational parameters. At first sight it appears
we still have a system of order 12, but in fact, the new vector equations are decou-
pled. Thus we can solve one of them, an equation of order 6 and then, of course, use
m1~r1 + m2~r2 =~0 to instantly write down the solution of the other. In other words,
the order is effectively reduced to 6. Since our new frame is unaccelerated the laws
of physics remain the same in the new coordinates.

Remarkably, there is also a non-inertial change of coordinates which simplifies the
equations and effectively reduces the order to 6. The idea is to place an observer on
m1 and to view the motion from there. Thus we let~r3 =~r2−~r1. A quick calculation
shows

d2~r3

dt2 = −µ3
~r3

‖~r3‖3 , µ3 = G(m1 +m2).

In this case we tend to forget that we are actually using an accelerated frame of
reference and we even have the temerity to view the observer as being at rest. In
particular, if we speak of a fixed plane, we actually mean a plane moving in such a
way that it appears fixed to our non-inertial observer.

Whichever viewpoint we choose the equation of motion is of order 6 and has the
form

d2~r
dt2 = −µ

~r

‖~r‖3 .

It will be convenient to introduce the notation: give a vector~a then a designates the
magnitude ‖~a‖. This notation is regrettably susceptible to the error known as the
“departed arrows,” but is useful nonetheless. In this new notation we have

d2~r
dt2 = −µ

~r
r3 .
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This equation is sometimes referred to, jokingly, as the one body problem or, more
properly, as the inverse square central force equation.

We first note

~r× d2~r
dt2 = −µ

~r×~r
r3 =~0

and therefore
d
dt

(

~r× d~r
dt

)

=
d~r
dt

× d~r
dt

+~r× d2~r
dt2 =~0.

Thus
~h =~r× d~r

dt
is a constant vector. It is called the specific angular momentum vector. Technically
we could use the constancy of~h to reduce the order by another 3. Conservation of
energy provides another first integral, allowing reduction to order 2. Eliminating the
time then yields a first order equation of motion, which we can solve. The solution
yields the orbits, but without the time dependence, since we eliminated it. Solving
explicitly for the time dependence is Kepler’s problem. We will arrive at this point
soon, but not quite by the path described.

If ~h =~0 then ~r and
d~r
dt

are parallel, corresponding to motion directly away from

the observer, or directly towards. The first choice is pretty dull, and the second is
exciting, at least to the observer, since it leads to a collision in finite time.

If~h 6=~0 then~h =~r× d~r
dt

implies that~r and
d~r
dt

are always perpendicular to~h. Thus

the motion takes place in a “fixed” plane through the observer and perpendicular to
~h. This plane is called the orbital plane.

Handedness or orientation is actually a bit subtle in the mathematical version of
Euclidean 3-space since we can not actually place our right hand (or, left for that
matter) in it. Fortunately it doesn’t much matter, and it’s safe to pretend we know
what we mean. With this proviso we choose a right-handed rectangular Cartesian
coordinate system with fundamental basis~i,~j and~k such that~i and~j lie in the orbital
plane. Then

~r = r cos(θ)~i+ r sin(θ)~j

where r and θ are functions of time, and are simply polar coordinates in the orbital
plane. Then

d~r
dt

=

(

dr
dt

cos(θ)− r sin(θ)
dθ
dt

)

~i+

(

dr
dt

sin(θ)+ r cos(θ)
dθ
dt

)

~j

and therefore
~h =~r× d~r

dt
= r2 dθ

dt
~k

5



Kepler Problem

and so
1
2

h =
1
2

r2 dθ
dt

=
dS
dt

where S is the area swept out in the orbital plane by the position vector~r. Thus we
have obtained Kepler’s second law

(K2): The position vector traces out equal areas in equal times in the
orbital plane, that is, the areal velocity is constant.

Now, since~h is constant
d2~r
dt2 ×~h =

d
dt

(

d~r
dt

×~h

)

From the equation of motion we have

d2~r
dt2 ×~h = − µ

r3~r×~h

= − µ
r3~r×

(

~r× d~r
dt

)

= − µ
r3

((

~r · d~r
dt

)

~r− (~r ·~r)d~r
dt

)

= − µ
r3

((

~r · d~r
dt

)

~r− r2 d~r
dt

)

Now

~r · d~r
dt

=
1
2

d
dt

(~r ·~r)

=
1
2

d
dt

r2

= r
dr
dt

Thus
d2~r
dt2 ×~h = µ

(

1
r

d~r
dt

− 1
r2

dr
dt

~r

)

= µ
d
dt

(

1
r
~r

)

.

By equating the two expressions for
d2~r
dt2 ×~h and integrating we obtain that there is

a constant vector~e, called the eccentricity vector, such that

d~r
dt

×~h = µ
(

1
r
~r +~e

)

.
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From this equation it follows that 1
r~r +~e is perpendicular to ~h and so lies in the

orbital plane. But~r lies in the orbital plane and so we conclude the vector~e lies in
the orbital plane. Thus we may assume that we have chosen our coordinates so that

~e = e~i.

Thus

~r ·
(

d~r
dt

×~h

)

= µ
(

1
r
~r ·~r + e~r ·~i

)

= µr (1+ ecos(θ))

where, as usual, the polar angle θ is the angle between~r and~i. But

~r ·
(

d~r
dt

×~h

)

=~h ·
(

d~r
dt

×~r

)

=~h ·~h = h2.

Thus we have

r =
h2/µ

1+ ecos(θ)

which is the polar equation of a conic section with parameter h2/µ and eccentricity
e. Moreover θ is the true anomaly and since θ is measured from~i and e ≥ 0 we
conclude that the eccentricity vector~e points towards periapsis. At any rate we have
established what is essentially Kepler’s first law:

(K1): The motion takes place along a conic section with the observer
at a focus.

Recall e = 0 for a circle, 0 < e < 1 for an ellipse, e = 1 for a parabola, and e > 1 for
a hyperbola. Kepler’s laws actually arose from his study of the orbit of Mars and
so were formulated only for an elliptical orbit. As we have seen the first two laws
actually hold also for parabolic and hyperbolic orbits.

Consider now the case of an elliptical orbit (0 ≤ e < 1). As we saw above periapsis
(minimum distance rmin) occurs when θ = 0. By symmetry apoapsis (maximum
distance rmax) occurs when θ = π . Thus

rmin =
h2/µ
1+ e

and rmax =
h2/µ
1− e

.

If a is the semi-major axis then 2a = rmin + rmax. Thus

a =
h2

(1− e2)µ

and so
(1− e2)1/2 = hµ−1/2a−1/2.
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The area of the ellipse is given by

S = πab = π(1− e2)1/2

and the areal velocity we have already seen is

h
2
.

Thus the period of the motion is given by

P =
S

h/2
=

2π√µ
a3/2

which yields Kepler’s third law:

(K3): In the case of elliptical motion the square of the period is propor-
tional to the cube of the mean distance a.

In the 2-body problem the orbit is usually described by 6 parameters.

1. A scale factor, usually the semi-major axis a (for elliptical orbits) or the pa-
rameter p (in general) otherwise known as the semi-latus rectum.

2. The eccentricity e.

3. The inclination of the orbit relative to some reference plane through the ob-
server’s position.

4. The longitude of the ascending node, that is, where the orbit goes from below
the reference plane to above it.

5. The argument of periapsis, that is, the angle between the ascending node and
periapsis.

6. One of, the time of periapsis or the true anomaly at epoch, that is, the true
anomaly at the time of observation.

For all the wonderful details check [2], an excellent textbook. You may also find
[7] very useful. An interesting, but unfortunately non-mathematical, description of
how Newton’s law of gravity was used to discover Neptune is given in [5]. It is
great light reading.

Note the orbit may be determined in a number of ways from observtional data:

• Gibbs’ method: from 3 successive position vectors.

• Gauss’ method: from 2 position vectors and time of flight between them.

• Laplace’s method: from 3 angular positions (distances unknown) and times.
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3 Bessel Functions

For everything you could possibly want to known about Bessel functions check the
treatise [8]. This book should be in your private library!

For each z ∈ C

w −→ ez(w− 1
w )/2

is an analytic function in C ∼ {0}. Hence we have a Laurent series

ez(w− 1
w )/2 =

∞

∑
n=−∞

Jn(z)w
n, w 6= 0.

The coefficient Jn is called the Bessel function of order n. By replacing 1/w by −w
we see easily

J−n(z) = (−1)nJn(z).

If r > 0 and γ(t) = reit , 0 ≤ t ≤ 2π , then the formula for the coefficients of the
Laurent series yields

Jn(z) =
1

2πi

∫

γ
w−n−1ez(w−1/w)/2 dw.

It follows that Jn is an entire function. Taking r = 1 we obtain

Jn(z) =
1

2π

∫ 2π

0
eizsin t−int dt.

If we replace γ(t) by γ1(t) = e−it we obtain instead

Jn(z) =
1

2π

∫ 2π

0
e−izsin t+int dt.

By adding these two expressions (and dividing by 2) we obtain

Jn(z) =
1

2π

∫ 2π

0
cos(zsin t −nt) dt.

If we replace t by 2π − t on the interval [π,2π] we finally obtain

Jn(z) =
1
π

∫ π

0
cos(zsint −nt) dt.
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4 Kepler’s Problem

One of the tools Kepler introduced to describe an elliptical orbit is the circumscribed
circle. If we consider a point Q on the ellipse with true anomaly θ and project it
onto the circle perpendicularly to the major axis of the ellipse we obtain a point with
central angle E called the eccentric anomaly of Q. We have a number of relations:

sin(θ) =
(1− e2)1/2 sin(E)

1− ecos(E)

sin(E) =
(1− e2)1/2 sin(θ)

1+ ecos(θ)

r cos(θ) = a(cos(E)− e)

r sin(θ) = a(1− e2)1/2 sin(E)

r = a(1− ecos(E))

cos(θ) =
cos(E)− e

1− ecos(E)

tan(θ/2) =

(

1+ e
1− e

)1/2

tan(E/2).

I am sure with effort you could find many more relationships!

The area swept out by the radius vector from periapsis is

1
2

∫ θ

0
r2 dθ =

1
2

a2(1− e2)1/2(E − esin(E)) =
ab
2

(E − esin(E)).

This is a bit of a calculation that you may enjoy doing. You can do it geometrically
as Kepler must have done, or you can make a suitable change of variable in the
integral.

The quantity
M = E − sin(E)

is called the mean anomaly. Let T be the time of periapsis and let P be the period
of the elliptical orbit. Since the areal velocity is constant we have the area swept
out at time t is

t −T
P

πab =
t −T

P
πa2(1− e2)1/2.

Comparing this result with the calculation above we obtain

t −T
P

= E − sin(E), or M =
t −T

P
.

Thus to predict the position (E) at a given time (t) we have to solve the equation
M = E − sin(E) for E. This is Kepler’s problem. Since 0 ≤ e < 1 in the elliptical
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case we see that M is a strictly increasing function of E and so in principle we can
solve for E in terms of M.

Suppose we have found the solution E = g(M) to Kepler’s equation. Then an easy
calculation shows

g(M +2π) = g(M)+2π

and therefore g(M)−M is periodic with period 2π . Note also that it is odd. Thus
we can consider a Fourier sine expansion,

g(M)−M =
∞

∑
n=1

an sin(nM)

where

an =
1
π

∫ 2π

0
(g(M)−M)sin(nM) dM.

Making the change of variable M = E − sin(E) and integrating by parts, etc., we
obtain

an =
2

nπ

∫ π

0
cos(nE −nesin(E)) dE =

2
n

Jn(ne).

Thus we obtain Bessel’s solution to Kepler’s problem

E = M +
∞

∑
n=1

2
n

Jn(ne)sin(nM).

Such a series is called a Kapteyn series (see [8]) and converges fairly rapidly if
0 ≤ e < 1. One can also show

r
a

= 1+
1
2

e2 −
∞

∑
n=1

2e
n

J′n(ne)cos(nM),

another Kapteyn series. Prior to Bessel’s solution there were a number of approx-
imate methods including graphical ones. Note that Newton’s iteration for approxi-
mating roots works quite well for estimating solutions to Kepler’s equation. New-
ton’s method may even have been invented for that purpose. Perhaps you can find
out!

5 Problems

Here’s a couple of “simple” problems. You can find more problems of this sort n
[4].

Problem 1. Explorer VI on Feb, 3, 1960 had a perigee distance of 6,627.6 km
and an apogee distance of 48,201.0 km. Compute the period.

11



Kepler Problem

Note the mass of Explorer VI was much smaller than the mass of the Earth so we
can take µ = GM where M is the mass of the Earth. Then

µ = 3.986032 × 105 km3/sec2.

The actual period was 45,166.2 sec and your answer should be pretty close. Note
due to various pertubations the period was decreasing by about 2.2644 sec per rev-
olution.

Problem 2. Given that Mars has a satellite (Phobos) of small mass in a circular
orbit of radius 9,330 km with period 27,540 sec, use only the major semi-axis and
the period of the Earth satellite Explorer VI given above to estimate the mass of
Mars in terms of the mass of the Earth.

Note the accepted value is about 0.108. Your answer should be within 3 %.
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